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ABSTRACT

Analytic solutidns for the envelope structures of two nonlinearly coupled
lower-hybrid waves propagating along their respective cone trajectories
are obtained. The coupling occurs through induced scatterings by particles.
The results indicate anomalous spatial pump depletion. Implications to

plasma heating are also discussed.
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1. INTRODUCTION

Recently, there has been active theoretical as well as experimental ef-
forts in studying thé r.f. plasma heating scheme using waves in the lower-
hybrid frequency range. It is now widely believed that nonlinear effects;
such as pump self-induced filamentation and parametric decays, play impor-
tant roles in this heating scheme [1,2]. One of the major concerns, which
motivates the present work, is then how these nonlinear processes affect
the transport of r.f. energy into the interior of a plasma. The nonlinear
process considered here is the decay instability due to induced scatterings

by particles; i.e., nonlinear electron and/or ion Landau dampings [3].

In Section 2, we first describe the theoretical model and approach used in
this work. We then derive the set of nonlinearly coupled equations in terms
of the action variables. The solutions to these equations are presented in
Section 3. Section 4 contains a summary of the theoretical results as well
as a discussion on the implications of these results to the plasma heating

process.

2. THE NONLINEARLY COUPLED EQUATIONS

The plasma is assumed to be spatially homogeneous and uniformly magnetized

with £'= B g, In the steady state, we assume that the electrostatic po-

tential consists of two parts, 4>O(£, t) and ¢>1(§’ t), oscillating at,



respectively, frequencies wO and UOl; i.e.,

~Nv
— -7 + . . 3 .=
cj>J, (x,t) <chz<,)expc W t)+C.c. 5 j=o,1. D

Here, (,{)0 and (4)1 are of the order of lower—hybrid frequency, (A)lh=
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wpi(l +w§e/wce) and (,Oie ~ (,Oie. The notations used here have
their standard meanings. CPO and 4)1 are coupled to each other through
a low-frequency mode at frequency (A)S= w0~w1 2 0. Thus, CPO corresponds
to the pump wave excited by an external structure and ¢1 is the daughter
wave excited by the pump wave ¢O through the decay process. The dominant

coupling between 4)0 and ¢1 comes from the electron density perturbation

of the CA)S mode. Let
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It is then straightforward to derive the following set of coupled equa-
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and }‘l‘j is mainly due to the electron E x B drift,
U. =-S5 (7. ¢ xe,) )
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Also, we note that y_,_-: 3')'(9,('1' gg gg and Vs =33 .

For toroidal devices, x, v and z correspond to the (minor) radial, poloidal
and toroidal directions, respectively. Furthermore, in deriving Egs.(3) and

(4) we have ignored the thermal effects; which is justified so long as
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For regions near the plasma surface, these conditions are easily satisfied

in typical experiments.

As to the low-frequency (A)S mode, the dominant coupling is due to the
parallel ponderomotive force, —me(}‘l,-Z)uz, produced by(PO and 45 13 which
acts on the electrons along /}3 Denoting the corresponding potential be
s
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Because (A)S <L (Dce’ electron dynamics is mainly along B. We then can
~ ~
use q)p along with the self-consistent potential q)s in the electron one-

dimensional (in B direction) Vlasov equation to obtain the perturbed
~S
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electron distribution function fe 3
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As to the effectively unmagnetized ions (COZ >>(1)ii), they only respond
~S
linearly to qbs' Hence, we have
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Poisson's equation
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then relates q)s and, hence, nes no ;dvZ fes o) (P p Equations (3), (4),
(9), (10), (11) and (12), thus, provide a complete description of the

nonlinearly coupled system.

To proceed further analytically, we make the following WKB approximation
~
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and ( Coj, bj) satisfies the lower-hybrid dispersion relation
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Note, in Eqs.(13) and (14), because we are mainly interested in the
spatial structures in the x-z plane, we have assumed the envelopes to

be independent of y. Equations (3) and (4) then become
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For the induced scattering processes considered here, Cosrvk vi or k ve
s 2S

and the low-frequency mode is non-resonant. Thus, we can replace EZ by

ibs in Eqs.(10), (11) and (12). We then obtain
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Substituting Eq.(19) into Egs.(16) and (17) and expressing in terms of
the action variables Ij= k? (§§j|2/cdj with j = 0,1, we obtain
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is the group velocity. Note Eqs.(25) and (26) exhibit the conservation of

action flux; 1.e., ZE_ SZ-(ij Ij) = 0. Solutions to this set of non-
0,17

linearly coupled equations are discussed in the next section.



3. SOLUTIONS OF THE COUPLED EQUATIONS

Equations (25) and (26) can be written as

5 d
&L +Cof‘rﬂ"‘ér(,érl 3

3x 2% (25)"
2§14 2G4 &G

——-——--‘-C — - ]
> X a} ] 1 (26)

- = = 1 ] = O - —
Here, G, O(IO/Vgxl, G, o(Illvgxo and cj (vgz/vgx)j with j »1. Equa
tions (25)' and (26)' indicate that if nonlinear coupling is absent,

GO(IO) and Gl(Il) just propagate along there respective cone trajectories;

i.e., GO and G1 are only functions of, respectively, z - COX and z - Clx.

Nonlinear couplings, thus, make GO and G1 functions of both z - COx and

z - Clx. There exists a class of exact solutions to Egs.(25) ' and (26)°

and is given by f4]
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and

V==Cy-Cy . (33)

Subscripts T and ¥ denote derivatives. Formally, T and Z are two arbi-
trary, differentiable functions; which, however, are uniquely defined by
the boundary conditions at x = 0. Denoting Go(x =0, z) = Eb(z) and

Gl(x =0, z) = E&(z), we then have

2. \%

-VT S
i 1 P e/ VvV

Vs S
A —
Z(§)= -32'—- + v So ds é‘—i(S)eKP[ Sodrq-_t(v)/\/ ]5 (35)
with G302 Gp(3)+G4C3).

To illuminate the physical meanings of the solutions, let us take the

following simple boundary conditions
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Let At= AO+ A the solution then is;

1’
for|z—Coxl, lz—Clx‘ < a,
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and for lz - CQX‘ > a, ‘z - Clx( < a,A

Gp(TI)=0 (42)
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G, us)=

The above solution, thus, suggests a typical scale length of pump depletion

(or growth of the decay wave) in x given by

-1
Xd = 1/At = Eo((Ioo /v, x4 *Iio/vgxo)] - (44)



Here, I.. is the value of Ij at x = 0 for j = 0,1. Note, from the defini-

30

tion of & in Eq.(27), Xy has a simple physical interpretation; i.e.,

4= (effective group velocity in x)/(effective parametric growth rate). To

~A Vv and T > I then x ., becomes

estimate xd, we assume v pxl 00 ~ 10° d
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approximately, using Eq.(27),
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Here, [EOI= |k0 éE O\’ n o= CkZO/OJO, CS is the ion-acoustic speed and

we have assumed (L)S ~ kzsve or ksvi for maximum coupling. For typical

10
. PR
tokamak experiments, Ny = 2-3, UJO/CUlh ~ 3 and Lo]jlfv 107, we have
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Currently, lower-hybrid heating experiments are running with 'CEO/BCSI ps
0(1), thus, the depletion length is in the centimeter range. The anomalous
pump depletion, however, does not occur until the pump wave penetrates

a typical distance Xp into the plasma; which is given by
Xp =%Xg In (oo Voxo/ TapVyxs ). (47)

Thus, xp depends on the wave intensity of the decay wave, IlO' To esti-

mate (I10 / IOO)’ we note that the results of both theoretical [5] as

well as numerical f6] investigations on the nonlinear saturation of
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the decay instability has shown that, in general, I10 ~ IOO at satura-
tion such that the parametric growth rate is balanced by the linear and

nonlinear damping rates. xp is then estimated to be

Xp ~ 0C(X ) (48)

The above estimates show that for typical tokamak parameters and lower-
hybrid wave heating experiments with ICEO/BCS|2 f& 0(1), the pump
penetration and depletion lengths in x(the minor radius) are in the centi-—
meter range. As pointed out to us by F.W. Perkins, the most pessimistic
observation is that the scaling law (which, from Eq.(45), depends mainly
on density and electron temperature) does not improve with the size of

the device. It, therefore, indicates that for present (e.g. ATC and PLT)
and future generations of tokamaks, nonlinear decay processes will anoma-

lously deplete the pump wave energy near the surface of the plasma.

4. SUMMARY AND DISCUSSION

In this paper, we consider the effects of parametric decays on the
transport of lower-hybrid pump wave energy into the interior of a plasma.
Using the WKB approximation, a set of equations describing two nonlinearly
coupled lower-hybrid waves propagating along their respective cone trajec-—
tories are derived in terms of the action variables. The two waves cor-

respond to, respectively, the pump and the decay waves. The nonlinear



couplings considered here are due to nonlinear electron and/or ion Landau
dampings. Exact solutions are then constructed from the boundary condi-
tions. Using simple but not totally unrealistic boundary conditions,
scale lengths for pump depletion and penetration are obtained; which

for typical tokamak parameters and pump power ICEO/BCS(Z‘f; 0(1), are

of the order of centimeters. The results, thus, indicate that for present
and future large-scale tokamaks, the lower-hybrid pump wave tend to

anomalously depletes its energy close to the plasma surface.

We now briefly discuss the implications of the above results to the
plasma heating process. We note that the depleted pump wave energy goes
into the decay wave, which is parametrically amplified. However, due to
the fact that the decay wave has a lower frequency and generally a finite
ky component, its cone trajectory in the x-z plane is closer to the
plasma surface than that of the pump wave; i.e., C1 > CO using the
notation of Egs.(25)' and (26)'. This observation suggests that the decay
wave will have further problems in penetrating into the plasma and will

deposit most of its energy near the surface; which implies, therefore,

anomalous heating at the plasma surface.

Finally, we remark that the analysis presented here can be extended to
include the effects due to plasma inhomogeneities. However, since the
scale lengths due to nonlinear effects are shown to be of the order of
centimeters and are generally comparable or shorter than those associa-
ted with inhomogeneities, the essential features of the results obtained

here, therefore, are expected to remain valid.
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