5,085 research outputs found

    ETHICS IN DATA COLLECTION AND ADVERTISING

    Get PDF
    This paper will explore the ethical connotations within the current advertising methods used by companies who want to market their products online. Specifically, the paper will focus on how customer data is collected and used via targeted advertising and what the ethics behind this method of advertising are. While marketers argue that targeted advertising using customer information results in greater consumer market efficiency, by sparking customers’ interests through tailored advertisements, many consumer privacy groups have questioned the ethicality of such practices

    Women\u27s Experience of Infertility: A Multi-systemic Perspective

    Get PDF
    This article describes a study that used a multi-system perspective to document the self-reported experience of women struggling with infertility and its treatment. A sub-sample of 56 participants from a parent study that examined posttraumatic growth in the context of infertility was used based on their answers to a single open-ended question about their infertility experience, which was included in the original questionnaire. Inclusion criteria were self-identified failure to achieve a pregnancy or carry it to term after at least one year of trying in the six years prior to the study and absence of a recent crisis unrelated to the infertility. Responses were content analyzed independently by a team of three researchers. The analysis yielded agreed upon 85 codes clustered in six themes: Challenges, perception of the experience, reactions, support, coping strategies and posttraumatic growth. The main overall finding points to the sense of being “trapped” in a web of multi-faceted, environmental and internal relationships between diverse systems involved in the infertility treatment. Implications for practice are identified and directions for future research suggested

    Incommensurate magnetic ordering in Cu2Te2O5X2 (X=Cl, Br) studied by single crystal neutron diffraction

    Full text link
    Polarized and unpolarized neutron diffraction studies have been carried out on single crystals of the coupled spin tetrahedra systems Cu2Te2O5X2 (X=Cl, Br). A model of the magnetic structure associated with the propagation vectors k'Cl ~ -0.150,0.422,1/2 and k'Br ~ -0.172,0.356,1/2 and stable below TN=18 K for X=Cl and TN=11 K for X=Br is proposed. A feature of the model, common to both the bromide and chloride, is a canted coplanar motif for the 4 Cu2+ spins on each tetrahedron which rotates on a helix from cell to cell following the propagation vector. The Cu2+magnetic moment determined for X=Br, 0.395(5)muB, is significantly less than for X=Cl, 0.88(1)muB at 2K. The magnetic structure of the chloride associated with the wave-vector k' differs from that determined previously for the wave vector k~0.150,0.422,1/2 [O. Zaharko et.al. Phys. Rev. Lett. 93, 217206 (2004)]

    On Petition for a Writ of Certiorari to The United States Court of Appeals for The Eighth Circuit, Brief of Law Professors Paul F. Rothstein, et. al., Office of the President v. Office of Independent Counsel

    Get PDF
    This Court should grant review not only because this is a case of national importance and prominence, but also because the decision below is a conspicuous departure from settled principles of evidence law. The panel majority concluded that communications between government lawyers and government officials are not protected by the attorney-client privilege, at least when those communications are sought by a federal grand jury. That conclusion conflicts with the predominant common-law understanding that the attorney-client privilege applies to government entities and that where the privilege applies, it is absolute (i.e., it protects against disclosure in all types of legal and investigative proceedings). In particular, the Court of Appeals\u27 decision rests on a fundamental misunderstanding of this Court\u27s decisions in Upjohn Co. v. United States, 449 U.S. 383 (1981), and United States v. Nixon, 418 U.s. 683 (1974). Moreover, this case warrants further review because the decision below has profound implications beyond the parties to this dispute. The Court of Appeals\u27 ruling, if allowed to stand, will create widespread uncertainty among federal, state, and local officials concerning the extent to which their communications with their agency lawyers, for the purpose of seeking legal advice in the conduct of governmental affairs, are protected by the attorney-client privilege. Unless this Court grants review and resolves this uncertainty, the decision below will likely have an adverse effect on the current and future operation of not only the Office of the President of the United States, but also government at all levels. At the very least, a decision of such vast implications (as in the present case) should be made by the highest court in the land. We accordingly urge the Court to grant the petition for review

    Embedded-Cluster Calculations in a Numeric Atomic Orbital Density-Functional Theory Framework

    Get PDF
    We integrate the all-electron electronic structure code FHI-aims into the general ChemShell package for solid-state embedding (QM/MM) calculations. A major undertaking in this integration is the implementation of pseudopotential functionality into FHI-aims to describe cations at the QM/MM boundary through effective core potentials and therewith prevent spurious overpolarization of the electronic density. Based on numeric atomic orbital basis sets, FHI-aims offers particularly efficient access to exact exchange and second order perturbation theory, rendering the established QM/MM setup an ideal tool for hybrid and double-hybrid level DFT calculations of solid systems. We illustrate this capability by calculating the reduction potential of Fe in the Fe-substituted ZSM-5 zeolitic framework and the reaction energy profile for (photo-)catalytic water oxidation at TiO2(110).Comment: 12 pages, 4 figure

    HIV-1 Coreceptor Activity of CCR5 and Its Inhibition by Chemokines: Independence from G Protein Signaling and Importance of Coreceptor Downmodulation

    Get PDF
    AbstractHIV-1 infection requires the presence of specific chemokine receptors on CD4+ target cells to enable the fusion reactions involved in virus entry. CCR5 is a major fusion coreceptor for macrophage-tropic HIV-1 isolates. HIV-1 entry and fusion are mediated by the viral envelope glycoprotein (Env) and are inhibited by CCR5 ligands, but the mechanisms are unknown. Here, we test the role of G protein signaling and CCR5 surface downmodulation by two separate approaches: direct inactivation of CCR5 signaling by mutagenesis and inactivation of Gi-type G proteins with pertussis toxin. A CCR5 mutant lacking the last 45 amino acids of the cytoplasmic C-terminus (CCR5306) was created that was expressed on transfected cells at levels comparable to cells expressing CCR5 and displayed normal chemokine binding affinity. CCR5 ligands induced calcium flux and receptor downmodulation in cells expressing CCR5, but not in cells expressing CCR5306. Nevertheless, CCR5 or CCR5306, when coexpressed with CD4, supported comparable HIV-1 Env-mediated cell fusion. Consistent with this, treatment of CCR5-expressing cells with pertussis toxin completely blocked ligand-induced transient calcium flux, but did not affect Env-mediated cell fusion or HIV-1 infection. Also, pertussis toxin did not block chemokine inhibition of Env-mediated cell fusion or HIV-1 infection. However, chemokines inhibited Env-mediated cell fusion less efficiently for CCR5306than for CCR5. We conclude that the C-terminal domain of CCR5 is critical for G protein signaling and receptor downmodulation from the surface, but that neither function is required for CCR5 fusion coreceptor activity. The contrasting phenotypes of CCR5 and CCR5306suggest that coreceptor downmodulation and direct blockage of Env interaction sites both contribute to chemokine inhibition of HIV-1 infection

    Effect of rapidly resorbable bone substitute materials on the temporal expression of the osteoblastic phenotype \u3cem\u3ein vitro\u3c/em\u3e

    Get PDF
    Ideally, bioactive ceramics for use in alveolar ridge augmentation should possess the ability to activate bone formation and, thus, cause the differentiation of osteoprogenitor cells into osteoblasts at their surfaces. Therefore, in order to evaluate the osteogenic potential of novel bone substitute materials, it is important to examine their effect on osteoblastic differentiation. This study examines the effect of rapidly resorbable calcium–alkali– orthophosphates on osteoblastic phenotype expression and compares this behavior to that of ß-tricalcium phosphate (TCP) and bioactive glass 45S5. Test materials were three materials (denominated GB14, GB9, GB9/25) with a crystalline phase Ca2KNa(PO4)2 and with a small amorphous portion containing either magnesium potassium phosphate (GB14) or silica phosphate (GB9 and GB9/25, which also contains Ca2P2O7); and a material with a novel crystalline phase Ca10[K/Na](PO4)7 (material denominated 352i). SaOS-2 human bone cells were grown on the substrata for 3, 7, 14, and 21 days, counted, and probed for an array of osteogenic markers. GB9 had the greatest stimulatory effect on osteoblastic proliferation and differentiation, suggesting that this material possesses the highest potency to enhance osteogenesis. GB14 and 352i supported osteoblast differentiation to the same or a higher degree than TCP, whereas, similar to bioactive glass 45S5, GB9/25 displayed a greater stimulatory effect on osteoblastic phenotype expression, indicating that GB9/25 is also an excellent material for promoting osteogenesis

    Dynamic regulation of interregional cortical communication by slow brain oscillations during working memory

    Get PDF
    Transiently storing information and mentally manipulating it is known as working memory. These operations are implemented by a distributed, fronto-parietal cognitive control network in the brain. The neural mechanisms controlling interactions within this network are yet to be determined. Here, we show that during a working memory task the brain uses an oscillatory mechanism for regulating access to prefrontal cognitive resources, dynamically controlling interactions between prefrontal cortex and remote neocortical areas. Combining EEG with non-invasive brain stimulation we show that fast rhythmical brain activity at posterior sites are nested into prefrontal slow brain waves. Depending on cognitive demand this high frequency activity is nested into different phases of the slow wave enabling dynamic coupling or de-coupling of the fronto-parietal control network adjusted to cognitive effort. This mechanism constitutes a basic principle of coordinating higher cognitive functions in the human brain
    • …
    corecore