52 research outputs found

    Effect of hosts on competition among clones and evidence of differential selection between pathogenic and saprophytic phases in experimental populations of the wheat pathogen Phaeosphaeria nodorum

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Monoculture, multi-cropping and wider use of highly resistant cultivars have been proposed as mechanisms to explain the elevated rate of evolution of plant pathogens in agricultural ecosystems. We used a mark-release-recapture experiment with the wheat pathogen <it>Phaeosphaeria nodorum </it>to evaluate the impact of two of these mechanisms on the evolution of a pathogen population. Nine <it>P. nodorum </it>isolates marked with ten microsatellite markers and one minisatellite were released onto five replicated host populations to initiate epidemics of Stagonospora nodorum leaf blotch. The experiment was carried out over two consecutive host growing seasons and two pathogen collections were made during each season.</p> <p>Results</p> <p>A total of 637 pathogen isolates matching the marked inoculants were recovered from inoculated plots over two years. Genetic diversity in the host populations affected the evolution of the corresponding <it>P. nodorum </it>populations. In the cultivar mixture the relative frequencies of inoculants did not change over the course of the experiment and the pathogen exhibited a low variation in selection coefficients.</p> <p>Conclusions</p> <p>Our results support the hypothesis that increasing genetic heterogeneity in host populations may retard the rate of evolution in associated pathogen populations. Our experiment also provides indirect evidence of fitness costs associated with host specialization in <it>P. nodorum </it>as indicated by differential selection during the pathogenic and saprophytic phases.</p

    Development of neural perceptual vowel spaces during the first year of life

    Get PDF
    This study measured infants' neural responses for spectral changes between all pairs of a set of English vowels. In contrast to previous methods that only allow for the assessment of a few phonetic contrasts, we present a new method that allows us to assess changes in spectral sensitivity across the entire vowel space and create two-dimensional perceptual maps of the infants' vowel development. Infants aged four to eleven months were played long series of concatenated vowels, and the neural response to each vowel change was assessed using the Acoustic Change Complex (ACC) from EEG recordings. The results demonstrated that the youngest infants' responses more closely reflected the acoustic differences between the vowel pairs and reflected higher weight to first-formant variation. Older infants had less acoustically driven responses that seemed a result of selective increases in sensitivity for phonetically similar vowels. The results suggest that phonetic development may involve a perceptual warping for confusable vowels rather than uniform learning, as well as an overall increasing sensitivity to higher-frequency acoustic information

    Allelic analysis of sheath blight resistance with association mapping in rice

    Get PDF
    Citation: Jia, Limeng, Wengui Yan, Chengsong Zhu, Hesham A. Agrama, Aaron Jackson, Kathleen Yeater, Xiaobai Li, et al. β€œAllelic Analysis of Sheath Blight Resistance with Association Mapping in Rice.” PLOS ONE 7, no. 3 (March 12, 2012): e32703. https://doi.org/10.1371/journal.pone.0032703.Sheath blight (ShB) caused by the soil-borne pathogen Rhizoctonia solani is one of the most devastating diseases in rice world-wide. Global attention has focused on examining individual mapping populations for quantitative trait loci (QTLs) for ShB resistance, but to date no study has taken advantage of association mapping to examine hundreds of lines for potentially novel QTLs. Our objective was to identify ShB QTLs via association mapping in rice using 217 sub-core entries from the USDA rice core collection, which were phenotyped with a micro-chamber screening method and genotyped with 155 genome-wide markers. Structure analysis divided the mapping panel into five groups, and model comparison revealed that PCA5 with genomic control was the best model for association mapping of ShB. Ten marker loci on seven chromosomes were significantly associated with response to the ShB pathogen. Among multiple alleles in each identified loci, the allele contributing the greatest effect to ShB resistance was named the putative resistant allele. Among 217 entries, entry GSOR 310389 contained the most putative resistant alleles, eight out of ten. The number of putative resistant alleles presented in an entry was highly and significantly correlated with the decrease of ShB rating (r =20.535) or the increase of ShB resistance. Majority of the resistant entries that contained a large number of the putative resistant alleles belonged to indica, which is consistent with a general observation that most ShB resistant accessions are of indica origin. These findings demonstrate the potential to improve breeding efficiency by using marker-assisted selection to pyramid putative resistant alleles from various loci in a cultivar for enhanced ShB resistance in rice
    • …
    corecore