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Abstract

Sheath blight (ShB) caused by the soil-borne pathogen Rhizoctonia solani is one of the most devastating diseases in rice
world-wide. Global attention has focused on examining individual mapping populations for quantitative trait loci (QTLs) for
ShB resistance, but to date no study has taken advantage of association mapping to examine hundreds of lines for
potentially novel QTLs. Our objective was to identify ShB QTLs via association mapping in rice using 217 sub-core entries
from the USDA rice core collection, which were phenotyped with a micro-chamber screening method and genotyped with
155 genome-wide markers. Structure analysis divided the mapping panel into five groups, and model comparison revealed
that PCA5 with genomic control was the best model for association mapping of ShB. Ten marker loci on seven
chromosomes were significantly associated with response to the ShB pathogen. Among multiple alleles in each identified
loci, the allele contributing the greatest effect to ShB resistance was named the putative resistant allele. Among 217 entries,
entry GSOR 310389 contained the most putative resistant alleles, eight out of ten. The number of putative resistant alleles
presented in an entry was highly and significantly correlated with the decrease of ShB rating (r = 20.535) or the increase of
ShB resistance. Majority of the resistant entries that contained a large number of the putative resistant alleles belonged to
indica, which is consistent with a general observation that most ShB resistant accessions are of indica origin. These findings
demonstrate the potential to improve breeding efficiency by using marker-assisted selection to pyramid putative resistant
alleles from various loci in a cultivar for enhanced ShB resistance in rice.
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Introduction

Rice (Oryza sativa L.) feeds more than half of the world’s

population [1] and genetic improvement of this food crop can

serve as a major component of sustainable food production. Rice

sheath blight (ShB), caused by the soil-borne fungal pathogen

Rhizoctonia solani Kühn, is a major disease of rice that greatly

reduces yield and grain quality worldwide [2]. Due to the high cost

of cultural practices and the phytotoxic influence associated with

the application of fungicides, the use of ShB resistant cultivars is

considered the most economical and environmentally sound

strategy in managing this disease. Understandings of genetic

control will facilitate cultivar improvement for this disease and

secure global food production.

The necrotrophic ShB pathogen has a broad host range and no

complete resistance has been identified in either commercial rice

cultivars or wild related species [3,4]. However, substantial

differences in susceptibility to ShB among rice cultivars have been

observed under field conditions [5,6]. Differential levels of

resistance and the associated resistance genes have been studied

among rice germplasm accessions [7]. Rice ShB resistance is

believed to be controlled by multiple genes or quantitative trait loci

(QTLs) [8]. Since Li et al. [9] first identified ShB QTLs using

restricted fragment length polymorphism (RFLP) markers under

field conditions, over 30 resistant ShB QTLs have been reported

using various mapping populations, such as F2s [10–14], double

haploid (DH) lines [15], recombinant inbred lines (RILs) [8,16–

18], near-isogenic introgression lines (NIL) [19] and backcross

populations [20–23]. ‘Teqing’ and ‘Jasmine 85’ have been

repeatedly involved in these studies as the ShB resistant parents.

We are the first to map rice ShB QTLs using association mapping

strategy in a global germplasm collection.

Association mapping, known as linkage disequilibrium map-

ping, is a high-resolution method for the dissection of complex

genetic traits in plants [24–26]. Compared with the traditional bi-

parental mapping, association mapping has the benefits of (1)

comprehensive mapping resolution with genome-wide scanning;

(2) consuming far less time since no parental crosses need to be

generated [27,28]; and (3) potentially more QTLs and alleles can

be detected by evaluation of various genomes. Since the successful

application of association mapping in humans, researchers have

made great advances in utilizing this strategy as a genomics tool in

PLoS ONE | www.plosone.org 1 March 2012 | Volume 7 | Issue 3 | e32703

Arkansas, Stuttgart, Arkansas, United States of America, United States Department of Agriculture-Agricultural ResearchD

Service

 (WY)  dx; wu@zju.edu.cn (DW)

*

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by K-State Research Exchange

https://core.ac.uk/display/5177461?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


diverse plant species, including Arabidopsis (Arabidopsis thaliana)

[29–31], maize (Zea mays ssp. mays) [27,32–34], barley (Hordeum

vulgare L.) [35,36], tomato (Solanum lycopersicum L.) [37], sweet

sorghum [(Sorghum bicolor (L.) Moench)] [38,39], wheat (Triticum

aestivum L.) [40], and rice [41–47].

In association mapping, each identified marker usually has

multiple alleles in the mapping panel and each allele in a marker

locus contributes differently to the associated trait. Agrama and

Yan [42] reported that three alleles at each of three associated loci

(allele 87 of RM490, 105 of RM413 and 122 of RM277) and two

alleles at another locus (182 and 183 of RM263) had significantly

greater contribution to straighthead resistance than other

counterparts. Li et al. [47] determined that allele 126 bp had

the greatest effect on increasing grain yield, plant weight and

grains/panicle branch among eight alleles of RM471. There is no

study on allelic distribution for associated loci in a global rice

germplasm collection.

Linkage disequilibrium (LD), defined as the non-random

association of alleles at separate loci located on the same

chromosome [24], is a prerequisite for association mapping. The

distance at which LD declines with genetic or physical distance

determines the marker density needed for achieving a reasonable

mapping resolution. The extent of LD may vary among different

genomic regions [48]. Numerous studies on global germplasm

collections indicate 25 cM as a reasonable resolution for

association mapping in rice [41,47,49]. In our study, we used

154 simple sequence repeat (SSR) markers plus an indel to provide

coverage of 10 cM across the rice genome for sufficient mapping

resolution.

Accurate phenotyping is essential for mapping, especially when

the target trait is controlled by multiple genes or QTLs such as

ShB resistance. All the previous studies phenotyped ShB resistance

under field conditions with only one exception, Liu et al. (2009)

[18], where a micro-chamber method (MCM) was adapted. The

MCM described by Jia et al. (2007) [6] has proven to effectively

minimize the confounding effects of environmental and morpho-

logical factors, thus generating more reliable data. Furthermore,

numeric measurement of ShB in the MCM should be more

accurate than the traditional visual scoring under field conditions.

Because of these advantages, the MCM has been widely applied in

studies of ShB resistance [18,50,51].

Using association mapping, our objectives were to 1) map QTLs

associated with ShB resistance phenotyped with the MCM, 2)

identify putative resistant alleles in a global germplasm collection,

and 3) explore the use of ShB putative resistant alleles in a

breeding program.

Results

Variation of ShB severity ratings
The 217 sub-core entries in the mapping panel originated from

fifteen geographic regions including 77 countries worldwide. India

had the most entries (6.5%), followed by China (5.5%), Indonesia

(4.1%), Japan (4.1%) and Taiwan (4.1%). Their name, origin, ShB

severity rating, structure group and entry number in the Genetic

Stocks Oryza (GSOR) collection (http://www.ars.usda.gov/

Main/docs.htm?docid = 8318) are presented in (Table S1). The

ShB severity ratings among the 217 entries were distributed

normally, ranging from 0.25660.111 to 0.90960.096 with an

average of 0.52160.008 (Fig. 1). The resistant check Jasmine 85

was rated 0.47260.021 and susceptible check Lemont was rated

0.94660.080. Twenty-four entries (11.1%) were significantly more

resistant to ShB than Jasmine 85 at the 5% level of probability

while 54 others (24.9%) had similar resistance.

Figure 1. Distribution of sheath blight severity ratings among 217 sub-core entries. The rating was averaged over 18 plants, three in each
of six replications using the micro-chamber method with the resistant check Jasmine 85 and susceptible Lemont.
doi:10.1371/journal.pone.0032703.g001
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Population structure
Structure analysis from Q1 to Q10 across twenty runs for the

217 sub-core entries genotyped with 155 genome-wide DNA

markers using STRUCTURE demonstrated that when Q

reached five, the Pr(Q) became more-or-less plateaued, so Q5

captured the major structure in our data. Thus, the mapping

panel was divided into five subgroups and each entry was

classified to an appropriate subgroup using STRUCTURE.

Inferred by reference cultivars recommended by Agrama et al.

[52,53], the five subgroups were denoted as temperate japonica

(TEJ), aus (AUS), aromatic (ARO), indica (IND), and tropical japonica

(TRJ) (Fig. 2A). A similar structural pattern was seen with the

PCA analysis with the first two axes explaining 75.03% of

variation (Fig. 2B). Furthermore, the genetic distance based on

cluster analysis also divided the mapping panel into five major

clusters (Fig. 2C). All three approaches led to the same

conclusion: a five-group structure could clearly and sufficiently

explain the existing genetic diversity in the mapping panel. In the

mapping panel, IND had the most entries (86), followed by TRJ

(49), AUS (39), TEJ (36), and ARO (7). Among 24 entries having

greater resistance to ShB than the resistant check, Jasmine 85, 20

belonged to IND, two to AUS and one each to TRJ and admix

(TRJ-AUS-IND).

Determination of the best fit model
From dimension 1 to 10 in the PCA and structure Q1 to Q10,

PCA5 had the smallest Bayesian Information Criterion (BIC)

value, indicating that PCA5 should be the best fit model to map

ShB QTLs (Table 1). Hence, we tested each of 155 molecular

markers for association with ShB resistance using PCA5, and

plotted the observed versus expected -Log10(P) before and after

correction using the genomic control (GC). The plots of the

PCA5+GC were distributed more uniformly and was much closer

to the expected -Log10(P) than PCA5 alone (Fig. 3). In other

words, the PCA5+GC model showed better control for Type I

errors. Therefore, the GC approach was applied to correct the

biased estimation. The P values generated from the PCA5 model

after the GC correction were used to present the significance level

of each marker.

Marker loci and their alleles associated with sheath blight
Ten marker loci were identified to be significantly associated

with ShB resistance at the probability level of 5% or lower, three

on chromosome (Chr) 11, two on Chr1, and one each on Chr2, 4,

5, 6 and 8 (Table 2, Fig. 4). RM237 on Chr1 at 27.1 Mb had the

highest significance rating for ShB at the 0.002 level of probability.

RM11229 on the long arm of Chr1 explained the most phenotypic

variation (9.5%) with significance at the 0.044 level of probability.

RM11229 and 1233 each had six alleles, the most among the 217

sub-core entries, followed by RM341 and 254 (five alleles),

RM237, 8217,146 and 408 (four), RM133 (three) and RM7203

(two) (Table 2).

Among the six alleles of RM11229, allele 158 was present in 18

entries that had the lowest average ShB rating (0.414), and thus, it

was designated as the ‘putative resistant allele’ of this marker

locus. Accordingly, ten alleles, one each from the ten associated

marker loci, were noted as the putative resistant allele in Table 2

because they had the greatest effect to decrease ShB among all

the alleles for their respective loci (Table 2). ShB rating was the

smallest for putative resistant allele 158 of RM11229 among the

ten putative resistant alleles. Of the other five putative resistant

alleles, 139 of RM341 (present in 17 entries), 340 of RM146 (28

entries), 88 of RM7203 (120 entries), 169 of RM254 (12 entries)

and 177 of RM1233 (35 entries), had lower ShB means ranging

0.447–0.470 than the resistant check Jasmine 85 (0.472),

suggesting a stronger effect for resistance to ShB than Jasmine

85. The remaining four putative resistant alleles had similar ShB

ratings with Jasmine 85, suggesting a similar effect for the level of

ShB control.

Figure 2. The structure analysis divided our population into five groups, which was validated by the principal components analysis
(PCA) and cluster analysis. (A) Population structure analysis of 217 sub-core entries showing five sub-groups, the estimated membership
probability listed on the y-axis and each entry represented by a thin vertical line in different color: red = ARO, aromatic; blue = AUS, aus; pink = IND,
indica; green = TEJ, temperate japonica and yellow = TRJ, tropical japonica. (B) The spatial distribution of the entries with two dimensions in the
principal components analysis (PCA). (C) The unweighted pair-group method with arithmetic mean (UPGMA) tree based on Nei’s genetic distance
using five sub-group partitioning.
doi:10.1371/journal.pone.0032703.g002
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Among the ten putative resistant alleles, allele 88 of RM7203

was the most prevalent and existed in 120 (55%) of 217 entries in

the mapping panel, followed by allele 230 of RM133 and 119 of

RM408 (48% of the lines), allele 186 of RM8217 (23%), allele 340

of RM146, 128 of RM237 and 177 of RM1233 (13–16%), allele

139 of RM341 and 158 of RM1229 (8%), and allele 169 of

RM254 (6%).

Number of putative resistant alleles and sheath blight
resistance

As the number of putative resistant alleles in the germplasm

increased, so did germplasm resistance to ShB (Table S1). GSOR

310389 from Korea contained the most putative resistant alleles,

eight out of ten, and had a ShB rating of 0.351 which was

significantly more resistant than the resistant check Jasmine 85

which contained three putative resistant alleles and had a ShB

rating of 0.472. Among seven entries containing six putative

resistant alleles with a mean of 0.386 ShB, GSOR 310475 and

311475 were more resistant than Jasmine 85 and had ShB ratings

of 0.324 and 0.336, respectively. Among 28 entries having five

putative resistant alleles with a mean ShB rating of 0.444, seven

were significantly more resistant than Jasmine 85. Seven, out of 35

entries which carried four putative resistant alleles and had a mean

ShB 0.466, were identified to be significantly more resistant than

Jasmine 85. The mean ShB ratings for entries containing three,

two, one and zero putative resistant alleles were 0.483, 0.535,

Figure 3. The cumulative distributions of observed -Log10(P) values before and after genomic control (GC) in PCA5 model. The
genomic controlled PCA5 (PCA5+GC) model had a more uniform distribution and closer to the expected -Log10(P) values, thus greater power to
control the Type I errors than PCA5.
doi:10.1371/journal.pone.0032703.g003

Table 1. Comparative analysis of different subgroups using structure (Q model) and different dimensions in principal components
analysis (PCA) for association mapping of sheath blight resistance using 217 entries genotyped with 155 molecular markers.

Model Deviance BIC Model Deviance BIC

Simple model 2303.4 2292.6 PCA1 2368.6 2352.5

Q2 2361 2355.6 PCA2 2370.4 2348.9

Q3 2372.7 2345.8 PCA3 2373.8 2346.9

Q4 2377.1 2344.8 PCA4 2388.4 2356.1

Q5 2376.1 2338.4 PCA5 2399.5 2361.9

Q6 2376.5 2333.5 PCA6 2403.7 2360.7

Q7 2393.9 2345.5 PCA7 2403 2354.6

Q8 2383.1 2329.3 PCA8 2404.5 2350.7

Q9 2396.7 2337.6 PCA9 2407.1 2347.9

Q10 2389 2324.4 PCA10 2407.8 2343.2

BIC: Bayesian Information Criterion (the smaller, the better); Deviance: 22log likelihood.
doi:10.1371/journal.pone.0032703.t001
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Table 2. Marker loci significantly associated with sheath blight resistance, their physical locations on chromosomes (Chr), allele
size in 217 entries, number of entries with the allele, and their mean sheath blight (ShB) rating.

Marker Chr. Position (Mb) P value Rsq_Markera Allele (bp) Number of Entries ShB Meanb

RM11229 1 22.6 0.044 9.5% 158* 18 0.414

192 21 0.515

195 21 0.473

198 13 0.532

207 14 0.608

224 12 0.466

RM237 1 27.1 0.002 6.9% 122 19 0.526

128* 32 0.473

130 105 0.515

132 20 0.635

RM341 2 19.3 0.041 4.1% 135 89 0.558

138 39 0.545

139* 17 0.447

141 15 0.579

171 39 0.461

RM8217 4 32.6 0.044 3.2% 178 67 0.581

182 19 0.534

184 65 0.482

186* 49 0.476

RM146 5 18 0.021 3.8% 330 26 0.539

332 127 0.512

340* 28 0.463

344 28 0.591

RM133 6 0.2 0.043 2.4% 228 89 0.557

230* 104 0.479

232 22 0.577

RM408 8 0.1 0.023 4.0% 117 18 0.577

119* 105 0.478

125 18 0.498

127 57 0.591

RM7203 11 1.1 0.033 1.9% 88* 120 0.470

104 80 0.589

RM254 11 23.7 0.030 5.3% 159 25 0.580

161 36 0.564

163 54 0.511

167 50 0.480

169* 12 0.463

RM1233 11 26.5 0.036 5.1% 158 97 0.538

164 12 0.543

168 15 0.593

173 12 0.520

177* 35 0.451

179 12 0.524

Resistant check ‘Jasmine 85’ 0.472

aRsq_Marker - total explained phenotypic variation.
bThe mean of ShB severity rating for the entries with the allele.
Allele*: Putative resistant allele that had the lowest ShB mean at the marker locus.
doi:10.1371/journal.pone.0032703.t002
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0.582 and 0.598, respectively. There was a strong and negative

correlation between the ShB severity rating and number of

putative resistant alleles (r = 20.535, p,0.0001).

Our mapping results showed that most entries containing a

large number of putative resistant alleles were IND (Fig. 5 and

Table S1). All entries with six or more putative resistant alleles

were IND with only one exception of AUS. Among 28 entries

with five putative resistant alleles, 25 were IND and the

remaining three were AUS. There were 35 entries with four

putative resistant alleles, nine were AUS, one was an admix of

TRJ, AUS and IND, and the remaining 25 were IND. Among 35

entries with three putative resistant alleles, 18 were IND, eight

AUS, seven TRJ and two admixes of IND. However, among 51

entries without a single putative resistant allele, 26 were TEJ, 18

TRJ, four ARO and two admixes of TRJ-TEJ-ARO, and one

IND. Among 72 entries that carried four or more putative

resistant alleles, 58 (81%) were IND and 13 AUS (18%) plus an

admix of TRJ-AUS-IND.

Discussion

Pyramiding putative resistant alleles for cultivar
improvement

R. solani is a soil-borne necrotrophic fungus and its group AG1-

IA has a broad host range including rice, maize, wheat, sorghum,

bean (Phaseolus spp.) and soybean [Glycine max (L.) Merr.] [54]. The

pathogen’s ability to persist in soil and on crop residues allows it to,

survive in multiple ways and makes disease management difficult.

There is no complete resistance to ShB in rice because the

resistance is quantitatively controlled by numerous genes or

quantitative trait loci (QTLs). More than 30 QTLs responsible for

ShB have been reported in rice [8,10–23]. However, all of these

studies have been limited to conventional mapping populations

from a small number of parents, which limits the alleles in the

progeny to those present in the parental lines.

From our diverse mapping panel including 217 sub-core entries,

we identified ten marker loci significantly associated with ShB

resistance, each locus had numerous alleles, each allele contributed

differently to ShB resistance, and the putative resistant allele of

each locus contributed the most (Table 2). Highly significant

correlation demonstrated that as more putative resistant alleles

pyramided in a germplasm entry, the entry had greater resistance

to ShB. Among 24 entries that were significantly more resistant

than the resistant check Jasmine 85 that had three putative

resistant alleles, 17 (71%) contained four or more putative resistant

alleles. Among 54 entries that had similar resistance with Jasmine

85, 29 (54%) possessed three or more putative resistant alleles.

These findings suggest that marker-assisted breeding for ShB

resistance can be conducted on an allelic level by pyramiding

putative resistant alleles in a cultivar. This can be accomplished in

a two pronged approach by combining parental lines based upon

their combination of number of different ShB resistant loci and

possessing the putative resistant alleles at these loci. For example,

resistant entry GSOR 310389 that has eight putative resistant

alleles could be crossed with a commercial cultivar having fewer

putative resistant alleles, and the progeny would be selected based

on those having the most highly putative resistant alleles at the

most loci. The breeding program would end up with the selection

of progeny containing the most putative resistant alleles,

potentially having greater resistance to ShB than either parental

line.

Pyramiding responsible genes has been successfully applied in

rice breeding for disease resistance including bacterial blight

(Xanthomonas oryzae pv.) and blast (Magnaporthe oryzae). Singh et al.

(2001) [55] pyramided three bacterial blight resistance genes, xa5,

xa3 and Xa21 into a cultivar PR106 and increased resistant

spectrum and level to the disease pathogen. Hittalmani et al.

(2000) [56] gathered three blast resistant genes, Pi1, Piz5 and Pita

in a cultivar Co39 using RFLP and PCR based marker technology

and the improved cultivar demonstrated a durable resistance to

Figure 4. The physical position of marker loci significantly associated with sheath blight in our study (with underlines) in
comparison with previous studies. The black bars show the estimated location according to their flanking markers. The positions of marker loci
were cited from the Annotated Nipponbare Sequence 2009 on Gramene (http://www.gramene.org/).
doi:10.1371/journal.pone.0032703.g004
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multiple biotypes of blast pathogen. Similarly, McClung et al.

(1997) [57] combined three major genes, Pi-d, Pi-z and Pi-kh, and

bred blast resistant cultivar Jefferson. All the successful applica-

tions of gene pyramiding have been at the gene loci level. Our

findings in this study will help enhance the application to allelic

level in crop breeding. The allelic application will improve

breeding efficiency, increase cultivar resistance to sheath blight in

rice and ultimately secure food production worldwide.

Allelic analysis can only be applied in association mapping

where large number of diversified genotypes are used and multiple

alleles are involved at each associated marker locus in the mapping

panel. Using this method, germplasm accessions that are identified

in the association mapping strategy to possess multiple putative

resistant alleles can be crossed with other accessions that have a

different complement of putative resistant alleles. The selection of

progeny possessing the most putative resistant alleles should be

more effective than it is for resistant loci. In this regard, association

mapping offers advantages for identifying parental material and

specific alleles that can enhance breeding.

Putative resistant alleles and ancestry background for
sheath blight

Jia et al. [58] reported 52 entries that are significantly more

resistant to ShB than Jasmine 85. The resistant entries were

identified from 1,794 entries of the USDA rice core collection that

has 35% indica, 27% temperate japonica, 24% tropical japonica, 10% aus

and 4% aromatic genotypes [52]. Based on the ancestry

classification, there are 621 indica entries in the core and 45 of

them are included in the resistant list, making a resistance

frequency of 7.2% for indica germplasm. Accordingly, the

resistance frequency is 2.8% for aromatic, 1.7% for aus, and 0.2%

each for temperate japonica and tropical japonica. In a study conducted

by Zuo et al. [23], japonica cultivars showed higher sheath blight

severity than indica cultivars. They describe a general observation

that japonica rice is more susceptible than indica rice. Furthermore,

Jasmine 85, Tetep and Teqing, used as parents in many studies on

mapping ShB resistance, all belong to indica.

This study demonstrated that: 1) a majority of the ShB putative

resistant alleles existed in indica germplasm, 2) most of the resistant

entries with a large number of putative resistant alleles were indica,

conversely 3) only a very small portion of putative resistant alleles

existed in japonica, and 4) the most susceptible entries with very few

or no putative resistant alleles were japonica (Fig. 5 and Table S1).

Entry GSOR 310389 is an example which had eight out of ten

putative resistant alleles, showed a high level of resistance to ShB,

and is indica. The results from association mapping match well with

the phenotypic observation that most resistant genotypes are indica

and resistant germplasm is rare in japonica.

ShB associated markers and QTL identification
Our genome-wide search found ten marker loci that were

significantly associated with sheath blight resistance (Fig. 4). Both

RM11229 (Chr1 at 22.7 Mb) and RM7203 (Chr11 at 1.1 Mb) are

novel QTLs that have not been previously reported. RM11229 is

approximately 5.0 Mb away from a ShB QTL reported by

Channamallikarjuna et al. [16] and RM7203 resides about

3.3 Mb away from one QTL identified by Li et al. [9]. The

remaining eight QTLs identified in this study were either quite

near (less than 1.4 Mb distant) or within the interval of previously

identified QTLs. The ten associated markers identified in this

study were located on seven chromosomes (Chr1, 2, 4, 5, 6, 8 and

11) (Fig. 4).

On Chr1 our study identified RM11229 and RM 237, which

occur within 4.4 Mb of each other, as markers associated with ShB

resistance. RM11229 explained the most phenotypic variation

(9.5%) and its putative resistant allele 158 bp had the smallest

average ShB score (0.414 in Table 2), indicating the greatest

resistance among the ten putative resistant alleles. RM237 was the

most significant marker for ShB resistance (p = 0.002). Therefore,

the 4.4 Mb gap between RM11229 and RM237 on Chr1 should

be a target area for fine-mapping ShB resistant genes in rice.

RM237 at 26.8 Mb is near the ShB QTL region spanning 27.6 to

34 Mb found by Charnnamallikarjuna et al. [16].

On Chr2 the identified marker RM341 located at 19.3 Mb,

overlapped with the qShB2-1 (11.4,21.5 Mb) reported by Liu et

al. [18] and was near the qSB-2 (11.8,17.5 Mb) by Zou et al.

[14], and qSBR-2 (11.4,19.0 Mb) by Kunihiro et al. [15]. RM341

explained 4.1% of phenotypic variation and its putative resistant

allele sized 139 bp existed in seventeen entries that were more

resistant to ShB than Jasmine 85 on average.

On Chr4, three reports uniformly indicated ShB QTLs on the

long arm at 29.8 to 33.6 Mb. This is a very narrow region of

3.8 Mb on the physical map, and corresponds to a small estimated

cM distance in the mapping population developed from

susceptible Lemont and resistant Teqing parents [8,9,59]. Our

identified marker RM8217 at 32.6 Mb was within the qSB-4-2

(30.6,33.6 Mb) by Pinson et al. [8] and Qsbr4a (31.7,33.6 Mb)

by Li et al. [9], and in close proximity (within 0.6 Mb) to QRlh4

(29.8,32.0 Mb) by Xie et al. [59]. This small area confirmed by

multiple studies strongly suggests a reliable location harboring ShB

QTL.

On Chr5, 6 and 8, we identified one ShB associated marker

from each chromosome. RM146 on Chr5 at 18.1 Mb is close to

the Rsb 1 reported by Che et al. [10] between RM164320 at

19.1 Mb and RM39300 at 20.7 Mb near the centromere. RM133

(Chr6 at 0.2 Mb) and RM408 (Chr8 at 0.1 Mb) were close to the

qShB6 (0.5,1.8 Mb) described by Liu et al. [18] and the QSbr8a

(1.5,2.1 Mp) by Li et al. [9], respectively. The putative resistant

alleles of both RM133 (allele 230 bp) and RM408 (allele 119 bp)

were common with more than 45% of entries among the 217 sub-

core entries in the mapping panel.

Figure 5. UPGMA tree based on Nei genetic distance for 217
sub-core entries. Twenty four entries marked with N were
significantly more resistant to sheath blight than the resistant check
‘Jasmine 85’. The number of ‘putative resistant alleles’ present is
distinguished by branch color: Red = eight putative resistant alleles,
Pink = seven, Blue = six, Green = five, and Orange = four.
doi:10.1371/journal.pone.0032703.g005
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RM7203 on the short arm of Chr11 at 1.1 Mb was a novel ShB

QTL that has not been reported. The putative resistant allele 88 of

RM7203 existed in 55% of the 217 entries, so was the most

common allele and had a ShB mean (0.470) similar to Jasmine 85

(0.472).

At the bottom of Chr11, two markers RM254 (at 23.7 Mb) and

RM1233 (at 26.5 Mb) were identified, explaining relatively high

phenotypic variation among ten markers, 5.3% and 5.1%,

respectively. The RM1233 was one of the flanking markers for

qSBR11-1 (26.5,27.2 Mb) reported by Channamallikarjuna et al.

[16]. The putative resistant alleles, 169 bp of RM254 and 177 bp

of RM1233, were in 12 and 35 entries, respectively. Their ShB

ratings were lower than Jasmine 85 in average, indicating a

stronger resistance.

Above comparisons confirm eight out of ten marker loci

identified in our association mapping with two novel QTLs,

RM11229 and RM7203, for sheath blight resistance. The

confirmation of previously identified QTLs provides validation

for the accuracy of QTLs identified in our study. Furthermore, the

comparisons demonstrate that association mapping can locate

many QTLs over the entire genome since the mapping panel

includes a large number of diversified entries of germplasm. In

biparental linkage mapping studies, fewer QTLs are typically

identified and can only be located in a limited area in the genome

where the two parents differ.

Materials and Methods

Germplasm panel
The rice mini-core collection of United States Department of

Agriculture (USDA) contains 217 entries [53] derived from 1,794

entries of a core collection [60]. The core collection has been

shown to be representative of the genetic diversity found in more

than 18,000 accessions of the USDA rice whole collection [60].

The mini-core has proven to be an efficient platform for

association mapping and has been successfully applied to mapping

QTLs for improving grain yield [47]. We excluded fourteen

entries of wild species to minimize interference due to different

genetic structure [61] and replaced them with fourteen core entries

known to have greater resistance to ShB than Jasmine 85, a

common resistant check in the comprehensive evaluation of the

core collection [58]. The replacement aimed to enhance detection

of QTLs by increasing the frequency of putative resistant alleles in

the panel.

Phenotyping
A complete set of 1,794 entries in the USDA rice core collection

was evaluated in 2008, using the MCM with three replications,

three plants in each replication following a randomized incomplete

block design over time [58]. Rice cultivars, Lemont (susceptible)

and Jasmine 85 (resistant), were included as repeated checks in

each replicate to serve as standards for evaluation. Both the check

cultivars have been used as standard checks in many other studies

regarding ShB resistance [11,12,14,18]. In 2009, the 217 entries of

the mini-core collection, plus those core entries that showed

significantly more resistance than Jasmine 85, were re-evaluated

using the same protocol. LSmean of ShB severity from six

replications including 18 observations of each entry was used for

association mapping.

The isolate RR0140-1 of R. solani was selected from 102 isolates

collected state-wide from Arkansas rice fields due to its slow

growing phenotype [51]. Slow growing isolates cause relatively

consistent disease reaction and differentiate susceptible cultivars

from moderately resistant ones better than fast growing isolates

[51]. Field evaluations showed no differences in disease reactions

between the slow growing isolates and the fast ones [51]. Further,

the RR0140-1 isolate have been adapted by numerous studies

[6,18,50]. Pathogen inoculum of RR0140-1 were grown by

placing sclerotia in the centre of potato dextrose agar (PDA)

plates (Sigma-Aldrich, St. Louis) containing 0.005% (wt/vol)

tetracycline, and then transferred to a fresh PDA medium for 5–6

days at 27uC under darkness. Mycelium discs (7 mm in diameter)

were excised from the outer growing area in the culture plate

where the outer mycelia were mostly active. Rice seedlings were

inoculated at the three-leaf stage.

In the greenhouse, each 12612 cm pot was filled with pre-

sterilized soil to ensure that the study was not confounded by the

presence of soil borne R. solani inoculum. Pots with drainage holes

were placed in flats filled with shallow water (,5 cm). Five seeds of

each accession were planted in each pot and thinned to three

uniform plants before pathogen inoculation. The three remaining

plants in a given pot were referred to as one experimental unit or

replicate. Each of the three seedlings in a pot was individually

inoculated with a round mycelium disc of RR0140-1 pathogen as

described by Jia et al. [6] with modification. Each disk was pressed

up to the base of the seedling stem, assuring that the mycelium was

in contact with the plant. After inoculation, each pot was

immediately covered with a 2-liter soft drink bottle with the

bottom and cap removed. Relative humidity was maintained over

80% in the bottle, which favoured growth of the sheath blight

pathogen on the plants. The greenhouse temperatures were set for

day/night at 30/22uC, respectively with a 12 h photoperiod.

Plant response to the sheath blight pathogen was measured

using the ratio between the height of the pathogen growing up the

plant and the height of the leaf collar on the last emerged leaf.

Because mature plant height varied from 70 to 202 cm in this

collection [60], the ratio excluded possible interference of plant

height in scoring disease response. Therefore, the smaller the ratio,

the greater the resistance was for an entry. Measurements were

taken when the ratio reached 1.0 for 75% of the susceptible check

plants, Lemont, so that the maximum susceptibility was scored 1.0.

ShB rating data were analyzed using the GLIMMIX procedure

in SAS version 9.1.3 [62]. The experimental design of randomized

incomplete block formed the basis of the statistical model, where

the accession is a fixed effect and block is treated as random effect.

The LSMEANS option was used to calculate the least-square

means (LSMs) of each entry and the LSMs were used for the

association mapping. The statistical differences of the accession to

each check (Jasmine 85 and Lemont) were determined by a

Dunnett’s multiple comparison test, using the diff = control option.

Genotyping
DNA was extracted from leaf tissue of five plants for each of the

217 entries using a rapid alkali extraction procedure [63] and

genotyped with 154 SSR markers plus an indel. The 155

molecular markers covered the entire rice genome with an

average genetic distance of 10 cM, described by Li et al. [47].

PCR amplifications were performed according to Agrama et al.

(2007) [42]. For each marker, forward primers were labeled with

either 6FAM, NED or Hex (Applied Biosystems, Foster City, CA,

USA or Integrated DNA Technologies, Coralville, IA, USA). The

amplifications were performed using MJ Research Tetrad thermal

cyclers (Bio-Rad, Hercules, CA, USA). PCR products were pooled

based on color and size range of amplified fragments (typically

three markers per run along with ROX-labeled size standard), and

the DNA was denatured by heating samples at 94uC for 5 min.

The samples were separated on an ABI Prism 3730 DNA

Analyzer according to the manufacturer’s instructions (Applied
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Biosystems). Data were analyzed using GeneMapper v. 3.7

software (Applied Biosystems).

Population Structure Analysis
Analysis of population structure in the mapping panel was

performed using STRUCTURE software [64,65]. Rare alleles,

with frequency of less than 5% in the panel, were treated as

missing data for structure analysis, principal components analysis

(PCA), cluster analysis and association mapping. We implemented

a model-based clustering method for inferring population structure

using distinctive allele frequencies and assigning individuals into Q

clusters. Twenty independent runs were performed for each value

of Q, ranging from one to ten, using the admixture model with a

burn-in of 50,000 iterations followed by 100,000 iterations during

analysis. Subgroups were determined on the basis of the following

criteria: (1) likelihood plot of these models; (2) stability of grouping

patterns across twenty runs; and (3) germplasm information about

the materials under study. To validate the population structure

and compare the different models, PCA was conducted to obtain

eigenvectors for further model testing and association analysis.

Genetic distance was calculated with PowerMarker [66] using

Nei’s method [67]. The resulting unweighted pair-group method

with arithmetic mean (UPGMA) tree was viewed using MEGA 4.0

[68].

Model comparisons and association analysis
The flexible mixed model [69] was used to control population

structure. For the purpose of model comparisons, the phenotypic

vector is modeled asy~XbzQvzZuze, where b is vector of

marker effects to be estimated. The term Qv contains the

coordinates of the individuals of p dimensions in Q matrix

generated by STRUCTURE [64,65] and PCA matrix by

NTSYSpc version 2.1 [70]; X and Z are the incidence matrices

of 1 s and 0 s that relate y to b and u, respectively. u is a vector of

polygene background effects; and e is a vector of residual. The

phenotypic covariance matrix was assumed to have the form

V~Z(2Ks2
g)ZTzIs2

e , where K is the K matrix including relative

kinship coefficients defining the degree of genetic covariance

between a pair of individuals [71], I is an n6n identity matrix, s2
g is

the genetic variance attributable to genome wide effects, and s2
e is

the residual variance.

When model K or Q+K or PCA+K were tested for a fit, we

found little convergence because of the low level of relatedness

among entries in the panel. Thus, a simple model (ignoring the

effect of population structure), possible linear models of Q2-Q10

(considering different number of subgroups from two to ten) and

PCA1-PCA10 (PCA matrix with different number of dimensions

from one to ten) were compared for the best fit to ShB determined

by Bayesian information criterion (BIC). In order to control false

positive rates, the genomic control (GC) method [72] was further

used for correcting population structure. The association mapping

was conducted using the best fit model with TASSEL v.2.1 [73],

followed by the GC. The associated markers with ShB resistance

were claimed at the probability level of 0.05. The ShB severity

ratings of germplasm entries that carried the same allele in an

associated marker locus were averaged to estimate allelic effect on

the ShB rating. Among the alleles of each associated marker locus,

the allele with the lowest ShB mean was indicative of the strongest

effect and was designated as the ‘putative resistant allele’.
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