325 research outputs found

    Calcium signals and calpain-dependent necrosis are essential for release of coxsackievirus B from polarized intestinal epithelial cells

    Get PDF
    Coxsackievirus B (CVB), a member of the enterovirus family, targets the polarized epithelial cells lining the intestinal tract early in infection. Although the polarized epithelium functions as a protective barrier, this barrier is likely exploited by CVB to promote viral entry and subsequent egress. Here we show that, in contrast to nonpolarized cells, CVB-infected polarized intestinal Caco-2 cells undergo nonapoptotic necrotic cell death triggered by inositol 1,4,5-trisphosphate receptor-dependent calcium release. We further show that CVB-induced cellular necrosis depends on the Ca 2+-activated protease calpain-2 and that this protease is involved in CVB-induced disruption of the junctional complex and rearrangements of the actin cytoskeleton. Our study illustrates the cell signaling pathways hijacked by CVB, and perhaps other viral pathogens, to promote their replication and spread in polarized cell types. Β© 2011 Bozym et al.published_or_final_versio

    Genetics of Resistance to the Rust Fungus Coleosporium ipomoeae in Three Species of Morning Glory (Ipomoea)

    Get PDF
    We examined the genetic basis of resistance to the rust pathogen Coleosporium ipomoea in three host species: Ipomoea purpurea, I. hederacea, and I. coccinea (Convolvulaceae). In crosses between resistant and susceptible individuals, second-generation selfed offspring segregated in ratios that did not differ statistically from the 3∢1 ratio indicative of single-gene resistance with the resistant allele dominant. One out of three crosses between resistant individuals from two different populations revealed that resistance loci differed in the two populations, as evidenced by the production of susceptible individuals among the S2 generation. These results suggest that gene-for-gene interactions contribute substantially to the dynamics of coevolution in this natural pathosystem. They also suggest that evolution of resistance to the same pathogen strain may involve different loci in different Ipomoea populations

    Human Cardiac-Derived Adherent Proliferating Cells Reduce Murine Acute Coxsackievirus B3-Induced Myocarditis

    Get PDF
    BACKGROUND: Under conventional heart failure therapy, inflammatory cardiomyopathy typically has a progressive course, indicating a need for alternative therapeutic strategies to improve long-term outcomes. We recently isolated and identified novel cardiac-derived cells from human cardiac biopsies: cardiac-derived adherent proliferating cells (CAPs). They have similarities with mesenchymal stromal cells, which are known for their anti-apoptotic and immunomodulatory properties. We explored whether CAPs application could be a novel strategy to improve acute Coxsackievirus B3 (CVB3)-induced myocarditis. METHODOLOGY/PRINCIPAL FINDINGS: To evaluate the safety of our approach, we first analyzed the expression of the coxsackie- and adenovirus receptor (CAR) and the co-receptor CD55 on CAPs, which are both required for effective CVB3 infectivity. We could demonstrate that CAPs only minimally express both receptors, which translates to minimal CVB3 copy numbers, and without viral particle release after CVB3 infection. Co-culture of CAPs with CVB3-infected HL-1 cardiomyocytes resulted in a reduction of CVB3-induced HL-1 apoptosis and viral progeny release. In addition, CAPs reduced CD4 and CD8 T cell proliferation. All CAPs-mediated protective effects were nitric oxide- and interleukin-10-dependent and required interferon-Ξ³. In an acute murine model of CVB3-induced myocarditis, application of CAPs led to a decrease of cardiac apoptosis, cardiac CVB3 viral load and improved left ventricular contractility parameters. This was associated with a decline in cardiac mononuclear cell activity, an increase in T regulatory cells and T cell apoptosis, and an increase in left ventricular interleukin-10 and interferon-Ξ³ mRNA expression. CONCLUSIONS: We conclude that CAPs are a unique type of cardiac-derived cells and promising tools to improve acute CVB3-induced myocarditis

    Enhanced Transduction and Replication of RGD-Fiber Modified Adenovirus in Primary T Cells

    Get PDF
    Background: Adenoviruses are often used as vehicles to mediate gene delivery for therapeutic purposes, but their research scope in hematological cells remains limited due to a narrow choice of host cells that express the adenoviral receptor (CAR). T cells, which are attractive targets for gene therapy of numerous diseases, remain resistant to adenoviral infection because of the absence of CAR expression. Here, we demonstrate that this resistance can be overcome when murine or human T cells are transduced with an adenovirus incorporating the RGD-fiber modification (Ad-RGD). Methodology/Principal Finding: A luciferase-expressing replication-deficient Ad-RGD infected 3-fold higher number of activated primary T cells than an adenovirus lacking the RGD-fiber modification in vitro. Infection with replicationcompetent Ad-RGD virus also caused increased cell cycling, higher E1A copy number and enriched hexon antigen expression in both human and murine T cells. Transduction with oncolytic Ad-RGD also resulted in higher titers of progeny virus and enhanced the killing of T cells. In vivo, 35–45 % of splenic T cells were transduced by Ad-RGD. Conclusions: Collectively, our results prove that a fiber modified Ad-RGD successfully transduces and replicates in primary

    Microparticle-mediated transfer of the viral receptors CAR and CD46, and the CFTR channel in a CHO cell model confers new functions to target cells

    Get PDF
    Cell microparticles (MPs) released in the extracellular milieu can embark plasma membrane and intracellular components which are specific of their cellular origin, and transfer them to target cells. The MP-mediated, cell-to-cell transfer of three human membrane glycoproteins of different degrees of complexity was investigated in the present study, using a CHO cell model system. We first tested the delivery of CAR and CD46, two monospanins which act as adenovirus receptors, to target CHO cells. CHO cells lack CAR and CD46, high affinity receptors for human adenovirus serotype 5 (HAdV5), and serotype 35 (HAdV35), respectively. We found that MPs derived from CHO cells (MP-donor cells) constitutively expressing CAR (MP-CAR) or CD46 (MP-CD46) were able to transfer CAR and CD46 to target CHO cells, and conferred selective permissiveness to HAdV5 and HAdV35. In addition, target CHO cells incubated with MP-CD46 acquired the CD46-associated function in complement regulation. We also explored the MP-mediated delivery of a dodecaspanin membrane glycoprotein, the CFTR to target CHO cells. CFTR functions as a chloride channel in human cells and is implicated in the genetic disease cystic fibrosis. Target CHO cells incubated with MPs produced by CHO cells constitutively expressing GFP-tagged CFTR (MP-GFP-CFTR) were found to gain a new cellular function, the chloride channel activity associated to CFTR. Time-course analysis of the appearance of GFP-CFTR in target cells suggested that MPs could achieve the delivery of CFTR to target cells via two mechanisms: the transfer of mature, membrane-inserted CFTR glycoprotein, and the transfer of CFTR-encoding mRNA. These results confirmed that cell-derived MPs represent a new class of promising therapeutic vehicles for the delivery of bioactive macromolecules, proteins or mRNAs, the latter exerting the desired therapeutic effect in target cells via de novo synthesis of their encoded proteins

    Anticancer Gene Transfer for Cancer Gene Therapy

    Get PDF
    Gene therapy vectors are among the treatments currently used to treat malignant tumors. Gene therapy vectors use a specific therapeutic transgene that causes death in cancer cells. In early attempts at gene therapy, therapeutic transgenes were driven by non-specific vectors which induced toxicity to normal cells in addition to the cancer cells. Recently, novel cancer specific viral vectors have been developed that target cancer cells leaving normal cells unharmed. Here we review such cancer specific gene therapy systems currently used in the treatment of cancer and discuss the major challenges and future directions in this field

    Release of Intracellular Calcium Stores Facilitates Coxsackievirus Entry into Polarized Endothelial Cells

    Get PDF
    Group B coxsackieviruses (CVB) are associated with viral-induced heart disease and are among the leading causes of aseptic meningitis worldwide. Here we show that CVB entry into polarized brain microvasculature and aortic endothelial cells triggers a depletion of intracellular calcium stores initiated through viral attachment to the apical attachment factor decay-accelerating factor. Calcium release was dependent upon a signaling cascade that required the activity of the Src family of tyrosine kinases, phospholipase C, and the inositol 1,4,5-trisphosphate receptor isoform 3. CVB-mediated calcium release was required for the activation of calpain-2, a calcium-dependent cysteine protease, which controlled the vesicular trafficking of internalized CVB particles. These data point to a specific role for calcium signaling in CVB entry into polarized endothelial monolayers and highlight the unique signaling mechanisms used by these viruses to cross endothelial barriers

    Potentiation of radiation therapy by the oncolytic adenovirus dl1520 (ONYX-015) in human malignant glioma xenografts

    Get PDF
    In spite of aggressive surgery, irradiation and/or chemotherapy, treatment of malignant gliomas remains a major challenge in adults and children due to high treatment failure. We have demonstrated significant cell lysis and antitumour activity of the E1B-55 kDa-gene-deleted adenovirus ONYX-015 (dl1520, CI-1042; ONYX Pharmaceuticals) in subcutaneous human malignant glioma xenografts deriving from primary tumours. Here, we show the combined efficacy of this oncolytic therapy with radiation therapy. Total body irradiation (5 Gy) of athymic nude mice prior to intratumoral injections of ONYX-015 1 x 10(8) PFU daily for 5 consecutive days yielded additive tumour growth delays in the p53 mutant xenograft IGRG88. Radiation therapy was potentiated in the p53 functional tumour IGRG121 with a 'subtherapeutic' dose of 1 x 10(7) PFU daily for 5 consecutive days, inducing significant tumour growth delay, 90% tumour regression and 50% tumour-free survivors 4 months after treatment. These potentiating effects were not due to increased adenoviral infectivity or replication. Furthermore, cell lysis and induction of apoptosis, the major mechanisms for adenoviral antitumour activity, did not play a major role in the combined treatment strategy. Interestingly, the oncolytic adenovirus seemed to accelerate radiation-induced tumour fibrosis. Potentiating antitumour activity suggests the development of this combined treatment for these highly malignant tumours

    Inducible viral receptor, A possible concept to induce viral protection in primitive immune animals

    Get PDF
    A pseudolysogen (PL) is derived from the lysogenic Vibrio harveyi (VH) which is infected with the VHS1 (Vibrio harveyi Siphoviridae-like 1) bacteriophage. The lysogenic Vibrio harveyi undergoes an unequivalent division of the extra-chromosomal VHS1 phage genome and its VH host chromosome and produces a true lysogen (TL) and pseudolysogen (PL). The PL is tolerant to super-infection of VHS1, as is of the true lysogen (TL), but the PL does not contain the VHS1 phage genome while the TL does. However, the PL can become susceptible to VHS1 phage infection if the physiological state of the PL is changed. It is postulated that this is due to a phage receptor molecule which can be inducible to an on-and-off regulation influence by an alternating condition of the bacterial host cell. This characteristic of the PL leads to speculate that this phenomenon can also occur in high organisms with low immunity such as shrimp. This article proposes a hypothesis that the viral receptor molecule on the target cell can play a crucial role in which the invertebrate aquaculture animals can become tolerant to viral infection. A possible mechanism may be that the target cell disrupts the viral receptor molecule to prevent super infection. This concept can explain a mechanism for the prevention of viral infection in invertebrate animals which do not have acquired immunity in response to pathogens. It can guide us to develop a mechanism of immunity to viral infection in low-evolved-immune animals. Also, it can be an additional mechanism that exists in high immune organism, as in human for the prevention of viral infectio
    • …
    corecore