606 research outputs found

    Being resilient for society: evidence from companies that leveraged their resources and capabilities to fight the COVID-19 crisis

    Get PDF
    This study adopts a resilience perspective to explain how companies managed to contribute innovative solutions to fight the COVID-19 crisis. We studied how five companies operating in different industries (three in automotive, one in printing, and one in rubber and plastic products manufacturing) managed to reorganize activities and employ their R&D and innovation capabilities to enhance their resilience. Simultaneously, they increased the health system’s capacity to cope with the outbreak. Through a qualitative inductive study, based on interviews with company managers, we found that the firms mobilized their resources and capabilities to expand their ability to adapt and cope with adversity at the organizational level. In addition, moved by the sensitivity to the extreme context and a perceived sense of urgency, the firms deployed the same endowments to strengthen the community’s response to a crisis. Our study shows that an organization can directly and positively foster the broader social system’s resilience. This study contributes to the innovation literature by identifying innovation capabilities as fundamental antecedents of resilience building for organizational response, paving the way for strengthening the link between resilience and innovation

    Pioneer settlement of the cold-water coral Desmophyllum dianthus (Esper, 1794) on plastic

    Get PDF
    Larval settlement is a critical step for sessile benthic species such as corals, whose ability to thrive on diverse natural and anthropogenic substrates may lead to a competitive advantage in the colonization of new environments with respect to a narrow tolerance for a specific kind of substratum. Plastic debris, widespread in marine waters, provides a large, motile, and solid substratum supporting a highly diverse biological community. Here we present the first observation of a floating plastic bottle colonized by the deep-sea coral Desmophyllum dianthus. The density pattern and co-occurring species composition suggest a pioneer behavior of this coral species, whose peculiar morphologic plasticity response when interacting with the plastic substrate (i.e., low density polyethylene) has not been observed before. The tolerance of D. dianthus for such plastic substrate may affect ecological processes in deep water environments, disrupting interspecific substrate competition in the benthic community

    Relative influence of environmental factors on biodiversity and behavioural traits of a rare mesopelagic fish, Trachipterus trachypterus (gmelin, 1789), in a continental shelf front of the Mediterranean Sea

    Get PDF
    Coastal environments can be influenced by water body masses with particular physical, chemical, and biological properties that create favourable conditions for the development of unique planktonic communities. In this study, we investigated a continental shelf front at Ponza Island (Tyrrhenian Sea) and discussed its diversity and complexity in relation to major environmental parameters. Moon phase and current direction were found to play a significant role in shaping species abundance and behaviour. During in situ observations, we also provided the first data on the behaviour of juveniles of a rare mesopelagic species, Trachipterus trachypterus, suggesting the occurrence of Batesian mimicry

    TrkB signaling directs the incorporation of newly generated periglomerular cells in the adult olfactory bulb.

    Get PDF
    In the adult rodent brain, the olfactory bulb (OB) is continuously supplied with new neurons which survival critically depends on their successful integration into pre-existing networks. Yet, the extracellular signals that determine the selection which neurons will be ultimately incorporated into these circuits are largely unknown. Here, we show that immature neurons express the catalytic form of the brain-derived neurotrophic factor receptor TrkB [full-length TrkB (TrkB-FL)] only after their arrival in the OB, at the time when inte-gration commences. To unravel the role of TrkB signaling in newborn neurons, we conditionally ablated TrkB-FL in mice via Cre expression in adult neural stem and progenitor cells. TrkB-deficient neurons displayed a marked impairment in dendritic arborization and spine growth. By selectively manipulating the signaling pathways initiated by TrkB in vivo, we identified the transducers Shc/PI3K to be required for dendritic growth, whereas the activation of phospholipase C-was found to be responsible for spine formation. Further-more, long-term genetic fate mapping revealed that TrkB deletion severely compromised the survival of new dopaminergic neurons, leading to a substantial reduction in the overall number of adult-generated periglomerular cells (PGCs), but not of granule cells (GCs). Surprisingly, this loss of dopaminergic PGCs was mirrored by a corresponding increase in the number of calretinin PGCs, suggesting that distinct subsets of adult-born PGCs may respond differentially to common extracellular signals. Thus, our results identify TrkB signaling to be essential for balancing the incorporation of defined classes of adult-born PGCs and not GCs, reflecting their different mode of integration in the OB. \ua9 2013 the authors

    Time-dependent cyclic behavior of reinforced concrete bridge columns under chlorides-induced corrosion and rebars buckling

    Get PDF
    This study presents the results of a refined numerical investigation meant at understanding the time-dependent cyclic behavior of reinforced concrete (RC) bridge columns under chlorides-induced corrosion. The chloride ingress in the cross-section of the bridge column is simulated, taking into account the effects of temperature, humidity, aging, and corrosion-induced cover cracking. Once the partial differential equations governing such multiphysics problem are solved through the finite-element method, the loss of reinforcement steel bars cross-section is calculated based on the estimated corrosion current density. The nonlinear cyclic response of the RC bridge column under corrosion is, thus, determined by discretizing its cross-sections into several unidirectional fibers. In particular, the nonlinear modeling of the corroded longitudinal rebars exploits a novel proposal for the estimation of the ultimate strain in tension and also accounts for buckling under compression. A parametric numerical study is finally conducted for a real case study to unfold the role of corrosion pattern and buckling mode of the longitudinal rebars on the time variation of capacity and ductility of RC bridge columns

    Polarized Expression of p75NTR Specifies Axons during Development and Adult Neurogenesis

    Get PDF
    VIDEO ABSTRACT: Newly generated neurons initiate polarizing signals that specify a single axon and multiple dendrites, a process critical for patterning neuronal circuits in vivo. Here, we report that the pan-neurotrophin receptor p75(NTR) is a polarity regulator that localizes asymmetrically in differentiating neurons in response to neurotrophins and is required for specification of the future axon. In cultured hippocampal neurons, local exposure to neurotrophins causes early accumulation of p75(NTR) into one undifferentiated neurite to specify axon fate. Moreover, knockout or knockdown of p75(NTR) results in failure to initiate an axon in newborn neurons upon cell-cycle exit in vitro and in the developing cortex, as well as during adult hippocampal neurogenesis in vivo. Hence, p75(NTR) governs neuronal polarity, determining pattern and assembly of neuronal circuits in adult hippocampus and cortical development

    Evidence for immunomodulation and apoptotic processes induced by cationic polystyrene nanoparticles in the hemocytes of the marine bivalve Mytilus

    Get PDF
    none8sìPolymeric nanoparticles can reach the marine environment from different sources as weathering of plastic debris and nanowaste. Nevertheless, few data are available on their fate and impact on marine biota. Polystyrene nanoparticles (PS NPs) can be considered as a model for studying the effects of nanoplastics in marine organisms: recent data on amino-modified PS NPs (PS-NH2) toxicity in sea urchin embryos underlined that marine invertebrates can be biological targets of nanoplastics. Cationic PS NPs have been shown to be toxic to mammalian cells, where they can induce apoptotic processes; however, no information is available on their effects and mechanisms of action in the cells of marine organisms. In this work, the effects of 50 nm PS-NH2 were investigated in the hemocytes of the marine bivalve Mytilus galloprovincialis. Hemocytes were exposed to different concentrations (1, 5, 50 μg/ml) of PS-NH2 suspension in ASW. Clear signs of cytoxicity were evident only at the highest concentrations (50 μg/ml). On the other hand, a dose dependent decrease in phagocytic activity and increase in lysozyme activity were observed. PS-NH2 NPs also stimulated increase in extracellular ROS (reactive oxygen species) and NO (nitric oxide) production, with maximal effects at lower concentrations. Moreover, at the highest concentration tested, PS-NH2 NPs induced apoptotic process, as evaluated by Flow cytometry (Annexin V binding and mitochondrial parameters). The results demonstrate that in marine invertebrates the immune function can represent a significant target for PS-NPs. Moreover, in Mytilus hemocytes, PS-NH2 NPs can act through mechanisms similar to those observed in mammalian cells. Further research is necessary on specific mechanisms of toxicity and cellular uptake of nanoplastics in order to assess their impact on marine biota.openCanesi, L; Ciacci, Caterina; Bergami, E; Monopoli, M. P; Dawson, K. A; Papa, Stefano; Canonico, Barbara; Corsi, I.Canesi, L; Ciacci, Caterina; Bergami, E; Monopoli, M. P; Dawson, K. A; Papa, Stefano; Canonico, Barbara; Corsi, I

    Case Report: Heterozygous Germline Variant in EIF6 Additional to Biallelic SBDS Pathogenic Variants in a Patient With Ribosomopathy Shwachman–Diamond Syndrome

    Get PDF
    Background: Shwachman-Diamond syndrome (SDS) is a rare autosomal recessive ribosomopathy mainly characterized by exocrine pancreatic insufficiency, skeletal alterations, neutropenia, and a relevant risk of hematological transformation. At least 90% of SDS patients have pathogenic variants in SBDS, the first gene associated with the disease with very low allelic heterogeneity; three variants, derived from events of genetic conversion between SBDS and its pseudogene, SBDSP1, provided the alleles observed in about 62% of SDS patients.Methods: We performed a reanalysis of the available WES files of a group of SDS patients with biallelic SBDS pathogenic variants, studying the results by next bioinformatic and protein structural analysis. Parallelly, careful clinical attention was given to the patient focused in this study.Results: We found and confirmed in one SDS patient a germline heterozygous missense variant (c.100T>C; p.Phe34Leu) in the EIF6 gene. This variant, inherited from his mother, has a very low frequency, and it is predicted as pathogenic, according to several in silico prediction tools. The protein structural analysis also envisages the variant could reduce the binding to the nascent 60S ribosomal.Conclusion: This study focused on the hypothesis that the EIF6 germline variant mimics the effect of somatic deletions of chromosome 20, always including the locus of this gene, and similarly may rescue the ribosomal stress and ribosomal dysfunction due to SBDS mutations. It is likely that this rescue may contribute to the stable and not severe hematological status of the proband, but a definite answer on the role of this EIF6 variant can be obtained only by adding a functional layer of evidence. In the future, these results are likely to be useful for selected cases in personalized medicine and therapy
    • …
    corecore