44,965 research outputs found

    Enhanced diffusion by reciprocal swimming

    Full text link
    Purcell's scallop theorem states that swimmers deforming their shapes in a time-reversible manner ("reciprocal" motion) cannot swim. Using numerical simulations and theoretical calculations we show here that in a fluctuating environment, reciprocal swimmers undergo, on time scales larger than that of their rotational diffusion, diffusive dynamics with enhanced diffusivities, possibly by orders of magnitude, above normal translational diffusion. Reciprocal actuation does therefore lead to a significant advantage over non-motile behavior for small organisms such as marine bacteria

    Autism genetics: searching for specificity and convergence.

    Get PDF
    Advances in genetics and genomics have improved our understanding of autism spectrum disorders. As many genes have been implicated, we look to points of convergence among these genes across biological systems to better understand and treat these disorders

    SU(2) potentials in quantum gravity

    Full text link
    We present investigations of the potential between static charges from a simulation of quantum gravity coupled to an SU(2) gauge field on 63×46^{3}\times 4 and 83×48^{3}\times 4 simplicial lattices. In the well-defined phase of the gravity sector where geometrical expectation values are stable, we study the correlations of Polyakov loops and extract the corresponding potentials between a source and sink separated by a distance RR. In the confined phase, the potential has a linear form while in the deconfined phase, a screened Coulombic behavior is found. Our results indicate that quantum gravitational effects do not destroy confinement due to non-abelian gauge fields.Comment: 3 pages, contribution to Lattice 94 conference, uuencoded compressed postscript fil

    Configuration Space for Random Walk Dynamics

    Full text link
    Applied to statistical physics models, the random cost algorithm enforces a Random Walk (RW) in energy (or possibly other thermodynamic quantities). The dynamics of this procedure is distinct from fixed weight updates. The probability for a configuration to be sampled depends on a number of unusual quantities, which are explained in this paper. This has been overlooked in recent literature, where the method is advertised for the calculation of canonical expectation values. We illustrate these points for the 2d2d Ising model. In addition, we proof a previously conjectured equation which relates microcanonical expectation values to the spectral density.Comment: Various minor changes, appendix added, Fig. 2 droppe

    On the energy momentum dispersion in the lattice regularization

    Full text link
    For a free scalar boson field and for U(1) gauge theory finite volume (infrared) and other corrections to the energy-momentum dispersion in the lattice regularization are investigated calculating energy eigenstates from the fall off behavior of two-point correlation functions. For small lattices the squared dispersion energy defined by Edis2=Ek2E024i=1d1sin(ki/2)2E_{\rm dis}^2=E_{\vec{k}}^2-E_0^2-4\sum_{i=1}^{d-1}\sin(k_i/2)^2 is in both cases negative (dd is the Euclidean space-time dimension and EkE_{\vec{k}} the energy of momentum k\vec{k} eigenstates). Observation of Edis2=0E_{\rm dis}^2=0 has been an accepted method to demonstrate the existence of a massless photon (E0=0E_0=0) in 4D lattice gauge theory, which we supplement here by a study of its finite size corrections. A surprise from the lattice regularization of the free field is that infrared corrections do {\it not} eliminate a difference between the groundstate energy E0E_0 and the mass parameter MM of the free scalar lattice action. Instead, the relation E0=cosh1(1+M2/2)E_0=\cosh^{-1} (1+M^2/2) is derived independently of the spatial lattice size.Comment: 9 pages, 2 figures. Parts of the paper have been rewritten and expanded to clarify the result

    The probability distribution of a trapped Brownian particle in plane shear flows

    Full text link
    We investigate the statistical properties of an over-damped Brownian particle that is trapped by a harmonic potential and simultaneously exposed to a linear shear flow or to a plane Poiseuille flow. Its probability distribution is determined via the corresponding Smoluchowski equation, which is solved analytically for a linear shear flow. In the case of a plane Poiseuille flow, analytical approximations for the distribution are obtained by a perturbation analysis and they are substantiated by numerical results. There is a good agreement between the two approaches for a wide range of parameters.Comment: 5 pages, 4 figur

    An ERTS-1 study of coastal features on the North Carolina coast

    Get PDF
    There are no author-identified significant results in this report
    corecore