research

On the energy momentum dispersion in the lattice regularization

Abstract

For a free scalar boson field and for U(1) gauge theory finite volume (infrared) and other corrections to the energy-momentum dispersion in the lattice regularization are investigated calculating energy eigenstates from the fall off behavior of two-point correlation functions. For small lattices the squared dispersion energy defined by Edis2=Ek2E024i=1d1sin(ki/2)2E_{\rm dis}^2=E_{\vec{k}}^2-E_0^2-4\sum_{i=1}^{d-1}\sin(k_i/2)^2 is in both cases negative (dd is the Euclidean space-time dimension and EkE_{\vec{k}} the energy of momentum k\vec{k} eigenstates). Observation of Edis2=0E_{\rm dis}^2=0 has been an accepted method to demonstrate the existence of a massless photon (E0=0E_0=0) in 4D lattice gauge theory, which we supplement here by a study of its finite size corrections. A surprise from the lattice regularization of the free field is that infrared corrections do {\it not} eliminate a difference between the groundstate energy E0E_0 and the mass parameter MM of the free scalar lattice action. Instead, the relation E0=cosh1(1+M2/2)E_0=\cosh^{-1} (1+M^2/2) is derived independently of the spatial lattice size.Comment: 9 pages, 2 figures. Parts of the paper have been rewritten and expanded to clarify the result

    Similar works

    Full text

    thumbnail-image

    Available Versions