22 research outputs found

    Potential contribution of cereal and milk based fermented foods to dietary nutrient intake of 1-5 years old children in Central province in Zambia

    Get PDF
    Zambia is still facing undernutrition and micronutrient deficiencies despite fortification and supplementation programmes stressing the need for additional solutions. Fermented foods have the potential to improve nutrient intake and, therefore, could have an important role in food based recommendations (FBRs) to ensure adequate intake of nutrients for optimal health of populations. Secondary dietary intake data was used in Optifood, a linear programming software to develop FBRs, for children aged 1–3 and 4–5 years in Mkushi district of Zambia. Three scenarios per age group were modeled to determine FBRs based on: (1) FBRs based on local available foods (2) FBR and Mabisi, a fermented milk beverage, and (3) FBR with Munkoyo, a cereal fermented beverage. The scenarios were compared to assess whether addition of Mabisi or Munkoyo achieved a better nutrient intake. FBRs based on only locally available non-fermented foods did not meet ≥70% of recommended nutrient intake (RNI) for calcium, fat, iron and zinc, so-called problem nutrients. The addition of Munkoyo to the FBRs did not reduce the number of problem nutrients, but after adding Mabisi to the FBR’s only iron (67% of RNI) in the 1–3 year age group and only zinc (67% of RNI) in the 4–5 year age group remained problem nutrients. Mabisi, a fermented milk product in combination with the local food pattern is a good additional source of nutrients for these age groups. However, additional nutrition sensitive and cost-effective measures would still be needed to improve nutrient intake, especially that of iron and zinc.</p

    Urinary Excretion of N1-methyl-2-pyridone-5-carboxamide and N1-methylnicotinamide in Renal Transplant Recipients and Donors

    Get PDF
    N1-methylnicotinamide (N1-MN) and N1-methyl-2-pyridone-5-carboxamide (2Py) are successive end products of NAD+ catabolism. N1-MN excretion in 24-h urine is the established biomarker of niacin nutritional status, and recently shown to be reduced in renal transplant recipients (RTR). However, it is unclear whether 2Py excretion is increased in this population, and, if so, whether a shift in excretion of N1-MN to 2Py can be attributed to kidney function. Hence, we assessed the 24-h urinary excretion of 2Py and N1-MN in RTR and kidney donors before and after kidney donation, and investigated associations of the urinary ratio of 2Py to N1-MN (2Py/N1-MN) with kidney function, and independent determinants of urinary 2Py/N1-MN in RTR. The urinary excretion of 2Py and N1-MN was measured in a cross-sectional cohort of 660 RTR and 275 healthy kidney donors with liquid chromatography-tandem mass spectrometry (LC-MS/MS). Linear regression analyses were used to investigate associations and determinants of urinary 2Py/N1-MN. Median 2Py excretion was 178.1 (130.3–242.8) μmol/day in RTR, compared to 155.6 (119.6–217.6) μmol/day in kidney donors (p < 0.001). In kidney donors, urinary 2Py/N1-MN increased significantly after kidney donation (4.0 ± 1.4 to 5.2 ± 1.5, respectively; p < 0.001). Smoking, alcohol consumption, diabetes, high-density lipoprotein (HDL), high-sensitivity C-reactive protein (hs-CRP) and estimated glomerular filtration rate (eGFR) were identified as independent determinants of urinary 2Py/N1-MN in RTR. In conclusion, the 24-h urinary excretion of 2Py is higher in RTR than in kidney donors, and urinary 2Py/N1-MN increases after kidney donation. As our data furthermore reveal strong associations of urinary 2Py/N1-MN with kidney function, interpretation of both N1-MN and 2Py excretion may be recommended for assessment of niacin nutritional status in conditions of impaired kidney function. View Full-Tex

    Urinary Excretion of N1-Methylnicotinamide, as a Biomarker of Niacin Status, and Mortality in Renal Transplant Recipients

    Get PDF
    Renal transplant recipients (RTR) commonly suffer from vitamin B6 deficiency and its functional consequences add to an association with poor long-term outcome. It is unknown whether niacin status is affected in RTR and, if so, whether this affects clinical outcomes, as vitamin B6 is a cofactor in nicotinamide biosynthesis. We compared 24-h urinary excretion of N1-methylnicotinamide (N1-MN) as a biomarker of niacin status in RTR with that in healthy controls, in relation to dietary intake of tryptophan and niacin as well as vitamin B6 status, and investigated whether niacin status is associated with the risk of premature all-cause mortality in RTR. In a prospective cohort of 660 stable RTR with a median follow-up of 5.4 (4.7–6.1) years and 275 healthy kidney donors, 24-h urinary excretion of N1-MN was measured with liquid chromatography-tandem mass spectrometry LC-MS/MS. Dietary intake was assessed by food frequency questionnaires. Prospective associations of N1-MN excretion with mortality were investigated by Cox regression analyses. Median N1-MN excretion was 22.0 (15.8–31.8) μmol/day in RTR, compared to 41.1 (31.6–57.2) μmol/day in healthy kidney donors (p < 0.001). This difference was independent of dietary intake of tryptophan (1059 ± 271 and 1089 ± 308 mg/day; p = 0.19), niacin (17.9 ± 5.2 and 19.2 ± 6.2 mg/day; p < 0.001), plasma vitamin B6 (29.0 (17.5–49.5), and 42.0 (29.8–60.3) nmol/L; p < 0.001), respectively. N1-MN excretion was inversely associated with the risk of all-cause mortality in RTR (HR 0.57; 95% CI 0.45–0.71; p < 0.001), independent of potential confounders. RTR excrete less N1-MN in 24-h urine than healthy controls, and our data suggest that this difference cannot be attributed to lower dietary intake of tryptophan and niacin, nor vitamin B6 status. Importantly, lower 24-h urinary excretion of N1-MN is independently associated with a higher risk of premature all-cause mortality in RTR. View Full-Tex

    Urinary Excretion of N1-Methylnicotinamide and N1-Methyl-2-Pyridone-5-Carboxamide and Mortality in Kidney Transplant Recipients

    Get PDF
    It is unclear whether niacin nutritional status is a target for improvement of long-term outcome after renal transplantation. The 24-h urinary excretion of N1-methylnicotinamide (N1-MN), as a biomarker of niacin status, has previously been shown to be negatively associated with premature mortality in kidney transplant recipients (KTR). However, recent evidence implies higher enzymatic conversion of N1-MN to N1-methyl-2-pyridone-5-carboxamide (2Py) in KTR, therefore the need exists for interpretation of both N1-MN and 2Py excretion for niacin status assessment. We assessed niacin status by means of the 24-h urinary excretion of the sum of N1-MN and 2Py (N1-MN + 2Py), and its associations with risk of premature mortality in KTR. N1-MN + 2Py excretion was measured in a longitudinal cohort of 660 KTR with LS-MS/MS. Prospective associations of N1-MN + 2Py excretion were investigated with Cox regression analyses. Median N1-MN + 2Py excretion was 198.3 (155.9-269.4) µmol/day. During follow-up of 5.4 (4.7-6.1) years, 143 KTR died, of whom 40 due to an infectious disease. N1-MN + 2Py excretion was negatively associated with risk of all-cause mortality (HR 0.61; 95% CI 0.47-0.79; p < 0.001), and infectious mortality specifically (HR 0.47; 95% CI 0.29-0.75; p = 0.002), independent of potential confounders. Secondary analyses showed effect modification of hs-CRP on the negative prospective association of N1-MN + 2Py excretion, and sensitivity analyses showed negative and independent associations of N1-MN and 2Py excretion with risk of all-cause mortality separately. These findings add further evidence to niacin status as a target for nutritional strategies for improvement of long-term outcome in KTR.</p

    Metabolic syndrome-related dietary pattern and risk of mortality in kidney transplant recipients

    Get PDF
    Background and aims: Presence of the metabolic syndrome (MetS) importantly contributes to excess mortality in kidney transplant recipients (KTRs). However, it is unclear which dietary factors drive the adverse role of MetS in KTRs. We aimed to define a dietary pattern that maximally explained the variation in MetS components, and to investigate the association between this MetS-related dietary pattern (MetS-DP) and all-cause mortality in KTRs. Methods and results: We included 429 adult KTRs who had a functioning graft ⩾1 year. A MetS-DP was constructed using habitual dietary intake derived from a 177-item food frequency questionnaire. We used reduced rank regression (RRR), and defined the six components of MetS (waist circumference, systolic blood pressure, diastolic blood pressure, serum triglycerides, HbA1c, and HDL cholesterol) as response variables and 48 food groups as predictor variables. We evaluated the association between the MetS-DP and all-cause mortality using multivariable Cox regression analysis. The MetS-DP was characterized by high intakes of processed meat and desserts, and low intakes of vegetables, tea, rice, fruits, milk, and meat substitutes. During a mean follow-up of 5.3 ± 1.2 years, 63 KTRs (14.7%) died. Compared to the lowest tertile of the Mets-DP score, those with the greatest adherence had a more than 3-fold higher risk of all-cause mortality (hazard ratio [HR] = 3.63; 95% confidence interval [CI], 1.70–7.74, P < 0.001), independent of potential confounders. Conclusions: We identified a MetS-related dietary pattern which was independently associated with all-cause mortality in KTRs. The association between this dietary pattern and all-cause mortality was mediated by MetS. Clinical trial reg. no. NCT02811835</p

    Meat intake and risk of mortality and graft failure in kidney transplant recipients

    Get PDF
    Background: It is unknown whether meat intake is beneficial for long-term patient and graft survival in kidney transplant recipients (KTR). Objectives: We first investigated the association of the previously described meat intake biomarkers 1-methylhistidine and 3-methylhistidine with intake of white and red meat as estimated from a validated food frequency questionnaire (FFQ). Second, we investigated the association of the meat intake biomarkers with long-term outcomes in KTR. Methods: We measured 24-h urinary excretion of 1-methylhistidine and 3-methylhistidine by validated assays in a cohort of 678 clinically stable KTR. Cross-sectional associations were assessed by linear regression. We used Cox regression analyses to prospectively study associations of log2-transformed biomarkers with mortality and graft failure. Results: Urinary 1-methylhistidine and 3-methylhistidine excretion values were median: 282; interquartile range (IQR): 132-598 μmol/24 h and median: 231; IQR: 175-306 μmol/24 h, respectively. Urinary 1-methylhistidine was associated with white meat intake [standardized β (st β): 0.20; 95% CI: 0.12, 0.28; P < 0.001], whereas urinary 3-methylhistidine was associated with red meat intake (st β: 0.30; 95% CI: 0.23, 0.38; P < 0.001). During median follow-up for 5.4 (IQR: 4.9-6.1) y, 145 (21%) died and 83 (12%) developed graft failure. Urinary 3-methylhistidine was inversely associated with mortality independently of potential confounders (HR per doubling: 0.55; 95% CI: 0.42, 0.72; P < 0.001). Both urinary 1-methylhistidine and urinary 3-methylhistidine were inversely associated with graft failure independent of potential confounders (HR per doubling: 0.84; 95% CI: 0.73, 0.96; P = 0.01; and 0.59; 95% CI: 0.41, 0.85; P = 0.004, respectively). Conclusions: High urinary 3-methylhistidine, reflecting higher red meat intake, is independently associated with lower risk of mortality. High urinary concentrations of both 1- and 3-methylhistidine, of which the former reflects higher white meat intake, are independently associated with lower risk of graft failure in KTR. Future intervention studies are warranted to study the effect of high meat intake on mortality and graft failure in KTR, using these biomarkers

    The potential contribution of yellow cassava to dietary nutrient adequacy of primary-school children in Eastern Kenya; the use of linear programming.

    Get PDF
    OBJECTIVE: Introduction of biofortified cassava as school lunch can increase vitamin A intake, but may increase risk of other deficiencies due to poor nutrient profile of cassava. We assessed the potential effect of introducing a yellow cassava-based school lunch combined with additional food-based recommendations (FBR) on vitamin A and overall nutrient adequacy using Optifood (linear programming tool). DESIGN: Cross-sectional study to assess dietary intakes (24 h recall) and derive model parameters (list of foods consumed, median serving sizes, food and food (sub)group frequency distributions, food cost). Three scenarios were modelled, namely daily diet including: (i) no school lunch; (ii) standard 5d school lunch with maize/beans; and (iii) 5d school lunch with yellow cassava. Each scenario and scenario 3 with additional FBR were assessed on overall nutrient adequacy using recommended nutrient intakes (RNI). SETTING: Eastern Kenya. SUBJECTS: Primary-school children (n 150) aged 7-9 years. RESULTS: Best food pattern of yellow cassava-based lunch scenario achieved 100 % RNI for six nutrients compared with no lunch (three nutrients) or standard lunch (five nutrients) scenario. FBR with yellow cassava and including small dried fish improved nutrient adequacy, but could not ensure adequate intake of fat (52 % of average requirement), riboflavin (50 % RNI), folate (59 % RNI) and vitamin A (49 % RNI). CONCLUSIONS: Introduction of yellow cassava-based school lunch complemented with FBR potentially improved vitamin A adequacy, but alternative interventions are needed to ensure dietary adequacy. Optifood is useful to assess potential contribution of a biofortified crop to nutrient adequacy and to develop additional FBR to address remaining nutrient gaps

    Urinary Taurine Excretion and Risk of Late Graft Failure in Renal Transplant Recipients

    Get PDF
    Taurine is a sulfur containing nutrient that has been shown to protect against oxidative stress, which has been implicated in the pathophysiology leading to late graft failure after renal transplantation. We prospectively investigated whether high urinary taurine excretion, reflecting high taurine intake, is associated with low risk for development of late graft failure in renal transplant recipients (RTR). Urinary taurine excretion was measured in a longitudinal cohort of 678 stable RTR. Prospective associations were assessed using Cox regression analyses. Graft failure was defined as the start of dialysis or re-transplantation. In RTR (58% male, 53 ± 13 years old, estimated glomerular filtration rate (eGFR) 45 ± 19 mL/min/1.73 m2), urinary taurine excretion (533 (210-946) µmol/24 h) was significantly associated with serum free sulfhydryl groups (β = 0.126; P = 0.001). During median follow-up for 5.3 (4.5-6.0) years, 83 (12%) patients developed graft failure. In Cox regression analyses, urinary taurine excretion was inversely associated with graft failure (hazard ratio: 0.74 (0.67-0.82); P < 0.001). This association remained significant independent of potential confounders. High urinary taurine excretion is associated with low risk of late graft failure in RTR. Therefore, increasing taurine intake may potentially support graft survival in RTR. Further studies are warranted to determine the underlying mechanisms and the potential of taurine supplementation

    A model-based exploration of farm-household livelihood and nutrition indicators to guide nutrition-sensitive agriculture interventions

    Get PDF
    Assessing progress towards healthier people, farms and landscapes through nutrition-sensitive agriculture (NSA) requires transdisciplinary methods with robust models and metrics. Farm-household models could facilitate disentangling the complex agriculture-nutrition nexus, by jointly assessing performance indicators on different farm system components such as farm productivity, farm environmental performance, household nutrition, and livelihoods. We, therefore, applied a farm-household model, FarmDESIGN, expanded to more comprehensively capture household nutrition and production diversity, diet diversity, and nutrient adequacy metrics. We estimated the potential contribution of an NSA intervention targeting the diversification of home gardens, aimed at reducing nutritional gaps and improving livelihoods in rural Vietnam. We addressed three central questions: (1) Do ‘Selected Crops’ (i.e. crops identified in a participatory process) in the intervention contribute to satisfying household dietary requirements?; (2) Does the adoption of Selected Crops contribute to improving household livelihoods (i.e. does it increase leisure time for non-earning activities as well as the dispensable budget)?; and (3) Do the proposed nutrition-related metrics estimate the contribution of home-garden diversification towards satisfying household dietary requirements? Results indicate trade-offs between nutrition and dispensable budget, with limited farm-household configurations leading to jointly improved nutrition and livelihoods. FarmDESIGN facilitated testing the robustness and limitations of commonly used metrics to monitor progress towards NSA. Results indicate that most of the production diversity metrics performed poorly at predicting desirable nutritional outcomes in this modelling study. This study demonstrates that farm-household models can facilitate anticipating the effect (positive or negative) of agricultural interventions on nutrition and the environment, identifying complementary interventions for significant and positive results and helping to foresee the trade-offs that farm-households could face. Furthermore, FarmDESIGN could contribute to identifying agreed-upon and robust metrics for measuring nutritional outcomes at the farm-household level, to allow comparability between contexts and NSA interventions
    corecore