295 research outputs found

    Quantum geometrodynamics for black holes and wormholes

    Full text link
    The geometrodynamics of the spherical gravity with a selfgravitating thin dust shell as a source is constructed. The shell Hamiltonian constraint is derived and the corresponding Schroedinger equation is obtained. This equation appeared to be a finite differences equation. Its solutions are required to be analytic functions on the relevant Riemannian surface. The method of finding discrete spectra is suggested based on the analytic properties of the solutions. The large black hole approximation is considered and the discrete spectra for bound states of quantum black holes and wormholes are found. They depend on two quantum numbers and are, in fact, quasicontinuous.Comment: Latex, 32 pages, 5 fig

    Controlling a resonant transmission across the δ′\delta'-potential: the inverse problem

    Full text link
    Recently, the non-zero transmission of a quantum particle through the one-dimensional singular potential given in the form of the derivative of Dirac's delta function, λδ′(x)\lambda \delta'(x) , with λ∈R\lambda \in \R, being a potential strength constant, has been discussed by several authors. The transmission occurs at certain discrete values of λ\lambda forming a resonance set λnn=1∞{\lambda_n}_{n=1}^\infty. For λ∉λnn=1∞\lambda \notin {\lambda_n}_{n=1}^\infty this potential has been shown to be a perfectly reflecting wall. However, this resonant transmission takes place only in the case when the regularization of the distribution δ′(x)\delta'(x) is constructed in a specific way. Otherwise, the δ′\delta'-potential is fully non-transparent. Moreover, when the transmission is non-zero, the structure of a resonant set depends on a regularizing sequence Δε′(x)\Delta'_\varepsilon(x) that tends to δ′(x)\delta'(x) in the sense of distributions as ε→0\varepsilon \to 0. Therefore, from a practical point of view, it would be interesting to have an inverse solution, i.e. for a given λˉ∈R\bar{\lambda} \in \R to construct such a regularizing sequence Δε′(x)\Delta'_\varepsilon(x) that the δ′\delta'-potential at this value is transparent. If such a procedure is possible, then this value λˉ\bar{\lambda} has to belong to a corresponding resonance set. The present paper is devoted to solving this problem and, as a result, the family of regularizing sequences is constructed by tuning adjustable parameters in the equations that provide a resonance transmission across the δ′\delta'-potential.Comment: 21 pages, 4 figures. Corrections to the published version added; http://iopscience.iop.org/1751-8121/44/37/37530

    Super-Poincare' algebras, space-times and supergravities (I)

    Full text link
    A new formulation of theories of supergravity as theories satisfying a generalized Principle of General Covariance is given. It is a generalization of the superspace formulation of simple 4D-supergravity of Wess and Zumino and it is designed to obtain geometric descriptions for the supergravities that correspond to the super Poincare' algebras of Alekseevsky and Cortes' classification.Comment: 29 pages, v2: minor improvements at the end of Section 5.

    Dynamics of a thin shell in the Reissner-Nordstrom metric

    Full text link
    We describe the dynamics of a thin spherically symmetric gravitating shell in the Reissner-Nordstrom metric of the electrically charged black hole. The energy-momentum tensor of electrically neutral shell is modelled by the perfect fluid with a polytropic equation of state. The motion of a shell is described fully analytically in the particular case of the dust equation of state. We construct the Carter-Penrose diagrams for the global geometry of the eternal black hole, which illustrate all possible types of solutions for moving shell. It is shown that for some specific range of initial parameters there are possible the stable oscillating motion of the shell transferring it consecutively in infinite series of internal universes. We demonstrate also that this oscillating type of motion is possible for an arbitrary polytropic equation of state on the shell.Comment: 17 pages, 7 figure

    Three-particle States in Nonrelativistic Four-fermion Model

    Get PDF
    On a nonrelativistic contact four-fermion model we have shown that the simple Lambda-cut-off prescription together with definite fine-tuning of the Lambda dependency of "bare"quantities lead to self-adjoint semi-bounded Hamiltonian in one-, two- and three-particle sectors. The fixed self-adjoint extension and exact solutions in two-particle sector completely define three-particle problem. The renormalized Faddeev equations for the bound states with Fredholm properties are obtained and analyzed.Comment: 9 pages, LaTex, no figure

    Fedosov and Riemannian supermanifolds

    Full text link
    Generalizations of symplectic and metric structures for supermanifolds are analyzed. Two types of structures are possible according to the even/odd character of the corresponding quadratic tensors. In the even case one has a very rich set of geometric structures: even symplectic supermanifolds (or, equivalently, supermanifolds with non-degenerate Poisson structures), even Fedosov supermanifolds and even Riemannian supermanifolds. The existence of relations among those structures is analyzed in some details. In the odd case, we show that odd Riemannian and Fedosov supermanifolds are characterized by a scalar curvature tensor. However, odd Riemannian supermanifolds can only have constant curvature.Comment: 20 page

    Possible types of the evolution of vacuum shells around the de Sitter space

    Full text link
    All possible evolution scenarios of a thin vacuum shell surrounding the spherically symmetric de Sitter space have been determined and the corresponding global geometries have been constructed. Such configurations can appear at the final stage of the cosmological phase transition, when isolated regions (islands) of the old vacuum remain. The islands of the old vacuum are absorbed by the new vacuum, expand unlimitedly, or form black holes and wormholes depending on the sizes of the islands as well as on the density and velocity of the shells surrounding the islands.Comment: 3 pages, 1 figur

    Quantization of (2+1)-spinning particles and bifermionic constraint problem

    Full text link
    This work is a natural continuation of our recent study in quantizing relativistic particles. There it was demonstrated that, by applying a consistent quantization scheme to a classical model of a spinless relativistic particle as well as to the Berezin-Marinov model of 3+1 Dirac particle, it is possible to obtain a consistent relativistic quantum mechanics of such particles. In the present article we apply a similar approach to the problem of quantizing the massive 2+1 Dirac particle. However, we stress that such a problem differs in a nontrivial way from the one in 3+1 dimensions. The point is that in 2+1 dimensions each spin polarization describes different fermion species. Technically this fact manifests itself through the presence of a bifermionic constant and of a bifermionic first-class constraint. In particular, this constraint does not admit a conjugate gauge condition at the classical level. The quantization problem in 2+1 dimensions is also interesting from the physical viewpoint (e.g. anyons). In order to quantize the model, we first derive a classical formulation in an effective phase space, restricted by constraints and gauges. Then the condition of preservation of the classical symmetries allows us to realize the operator algebra in an unambiguous way and construct an appropriate Hilbert space. The physical sector of the constructed quantum mechanics contains spin-1/2 particles and antiparticles without an infinite number of negative-energy levels, and exactly reproduces the one-particle sector of the 2+1 quantum theory of a spinor field.Comment: LaTex, 24 pages, no figure

    Evolution of a vacuum shell in the Friedman-Schwarzschild world

    Full text link
    The method of an effective potential is used to investigate the possible types of evolution of vacuum shells in the Friedman-Schwarzschild world. Such shells are assumed to emerge during phase transitions in the early Universe. The possible global geometries are constructed for the Friedman- Schwarzschild worlds. Approximate solutions to the equation of motion of a vacuum shell have been found. The conditions under which the end result of the evolution of the vacuum shells under consideration is the formation of black holes and wormholes with baby universes inside have been found. The interior of this world can be a closed, flat, or open Friedman universe.Comment: 12 pages, 4 figure

    Minkowski superspaces and superstrings as almost real-complex supermanifolds

    Full text link
    In 1996/7, J. Bernstein observed that smooth or analytic supermanifolds that mathematicians study are real or (almost) complex ones, while Minkowski superspaces are completely different objects. They are what we call almost real-complex supermanifolds, i.e., real supermanifolds with a non-integrable distribution, the collection of subspaces of the tangent space, and in every subspace a complex structure is given. An almost complex structure on a real supermanifold can be given by an even or odd operator; it is complex (without "always") if the suitable superization of the Nijenhuis tensor vanishes. On almost real-complex supermanifolds, we define the circumcised analog of the Nijenhuis tensor. We compute it for the Minkowski superspaces and superstrings. The space of values of the circumcised Nijenhuis tensor splits into (indecomposable, generally) components whose irreducible constituents are similar to those of Riemann or Penrose tensors. The Nijenhuis tensor vanishes identically only on superstrings of superdimension 1|1 and, besides, the superstring is endowed with a contact structure. We also prove that all real forms of complex Grassmann algebras are isomorphic although singled out by manifestly different anti-involutions.Comment: Exposition of the same results as in v.1 is more lucid. Reference to related recent work by Witten is adde
    • …
    corecore