1,719 research outputs found

    A theory of thin shells with orbiting constituents

    Get PDF
    The self-gravitating, spherically symmetric thin shells built of orbiting particles are sstudied. Two new features are found. One is the minimal possible value for an angular momentum of particles, above which elleptic orbits become possible. The second is the coexistence of both the wormhole solutions and the elleptic or hyperbolic orbits for the same values of the parameters (but different initial conditions). Possible applications of these results to astrophysics and quantum black holes are briefly discussed.Comment: 22 pages, Latex, 10 eps figures. CERN preprint no. CERN-TH 2000-16

    A new paradigm of governance for a carbon-pricing system

    Full text link
    Throughout its life, the United Nations has played a pioneering role in the world of ideas. COP21 – also known as Paris 2015 – shows the path for the United Nations to establish a new governance that will enforce the compliance of a new planetary carbon-pricing system. Maintaining global warming below 2 °C means implementing an efficient carbon-pricing system, supported by effective measures promoting a green energy transition. A planetary carbon governance yields a number of new insights that include the following: (1) a bonus-malus system with a fixed signal price for carbon, (2) a planetary carbon market that will gather existing regional carbon markets, (3) a hybrid carbon-pricing system linking a carbon tax and a carbon market for advanced countries and (4) a support mechanism for emerging and developing countries to assist them with a carbon-pricing system. This new governance will promote an energy transition plan. In the COP21 context, responsible policymaking requires key characteristics for the enforcement of a successful planetary carbon-pricing system

    Vacuum decay via Lorentzian wormholes

    Full text link
    We speculate about the spacetime description due to the presence of Lorentzian wormholes (handles in spacetime joining two distant regions or other universes) in quantum gravity. The semiclassical rate of production of these Lorentzian wormholes in Reissner-Nordstr\"om spacetimes is calculated as a result of the spontaneous decay of vacuum due to a real tunneling configuration. In the magnetic case it only depends on the field theoretical fine structure constant. We predict that the quantum probability corresponding to the nucleation of such geodesically complete spacetimes should be actually negligible in our physical Universe

    Construction of Self-Adjoint Berezin-Toeplitz Operators on Kahler Manifolds and a Probabilistic Representation of the Associated Semigroups

    Full text link
    We investigate a class of operators resulting from a quantization scheme attributed to Berezin. These so-called Berezin-Toeplitz operators are defined on a Hilbert space of square-integrable holomorphic sections in a line bundle over the classical phase space. As a first goal we develop self-adjointness criteria for Berezin-Toeplitz operators defined via quadratic forms. Then, following a concept of Daubechies and Klauder, the semigroups generated by these operators may under certain conditions be represented in the form of Wiener-regularized path integrals. More explicitly, the integration is taken over Brownian-motion paths in phase space in the ultra-diffusive limit. All results are the consequence of a relation between Berezin-Toeplitz operators and Schrodinger operators defined via certain quadratic forms. The probabilistic representation is derived in conjunction with a version of the Feynman-Kac formula.Comment: AMS-LaTeX, 30 pages, no figure

    Dynamics of a thin shell in the Reissner-Nordstrom metric

    Full text link
    We describe the dynamics of a thin spherically symmetric gravitating shell in the Reissner-Nordstrom metric of the electrically charged black hole. The energy-momentum tensor of electrically neutral shell is modelled by the perfect fluid with a polytropic equation of state. The motion of a shell is described fully analytically in the particular case of the dust equation of state. We construct the Carter-Penrose diagrams for the global geometry of the eternal black hole, which illustrate all possible types of solutions for moving shell. It is shown that for some specific range of initial parameters there are possible the stable oscillating motion of the shell transferring it consecutively in infinite series of internal universes. We demonstrate also that this oscillating type of motion is possible for an arbitrary polytropic equation of state on the shell.Comment: 17 pages, 7 figure

    Vacuum shell in the Schwarzschild-de Sitter world

    Full text link
    We construct the classification scheme for all possible evolution scenarios and find the corresponding global geometries for dynamics of a thin spherical vacuum shell in the Schwarzschild-de Sitter metric. This configuration is suitable for the modelling of vacuum bubbles arising during cosmological phase transitions in the early Universe. The distinctive final types of evolution from the local point of view of a rather distant observer are either the unlimited expansion of the shell or its contraction with a formation of black hole (with a central singularity) or wormhole (with a baby universe in interior).Comment: 15 pages, 8 figure

    Intertwining operator for AG2AG_2 Calogero-Moser-Sutherland system

    Get PDF
    We consider generalised Calogero-Moser-Sutherland quantum Hamiltonian HH associated with a configuration of vectors AG2AG_2 on the plane which is a union of A2A_2 and G2G_2 root systems. The Hamiltonian HH depends on one parameter. We find an intertwining operator between HH and the Calogero-Moser-Sutherland Hamiltonian for the root system G2G_2. This gives a quantum integral for HH of order 6 in an explicit form thus establishing integrability of HH.Comment: 24 page

    Resonating Valence Bond Theory of Superconductivity for Dopant Carriers: Application to the Cobaltates

    Full text link
    Within the tt--JJ model Hamiltonian we present a RVB mean field theory directly in terms of dopant particles. We apply this theory to NaxCoO2y\mathrm{Na}_{x}\mathrm{CoO_{2}}\cdot y% \mathrm{H_{2}0} and show that the resulting phase diagram TcT_c versus doping is in qualitative agreement with the experimental results

    Mass of perfect fluid black shells

    Get PDF
    The spherically symmetric singular perfect fluid shells are considered for the case of their radii being equal to the event horizon (the black shells). We study their observable masses, depending at least on the three parameters, viz., the square speed of sound in the shell, instantaneous radial velocity of the shell at a moment when it reaches the horizon, and integration constant related to surface mass density. We discuss the features of black shells depending on an equation of state.Comment: 1 figure, LaTeX; final version + FA
    corecore