70 research outputs found
Benchmarking coarse-grained models of organic semiconductors via deep backmapping
The potential of mean force is an effective coarse-grained potential, which is often approximated by pairwise potentials. While the approximated potential reproduces certain distributions of the reference all-atom model with remarkable accuracy, important cross-correlations are typically not captured. In general, the quality of coarse-grained models is evaluated at the coarse-grained resolution, hindering the detection of important discrepancies between the all-atom and coarse-grained ensembles. In this work, the quality of different coarse-grained models is assessed at the atomistic resolution deploying reverse-mapping strategies. In particular, coarse-grained structures for Tris-Meta-Biphenyl-Triazine are reverse-mapped from two different sources: 1) All-atom configurations projected onto the coarse-grained resolution and 2) snapshots obtained by molecular dynamics simulations based on the coarse-grained force fields. To assess the quality of the coarse-grained models, reverse-mapped structures of both sources are compared revealing significant discrepancies between the all-atom and the coarse-grained ensembles. Specifically, the reintroduced details enable force computations based on the all-atom force field that yield a clear ranking for the quality of the different coarse-grained models
Atomic-scale representation and statistical learning of tensorial properties
This chapter discusses the importance of incorporating three-dimensional
symmetries in the context of statistical learning models geared towards the
interpolation of the tensorial properties of atomic-scale structures. We focus
on Gaussian process regression, and in particular on the construction of
structural representations, and the associated kernel functions, that are
endowed with the geometric covariance properties compatible with those of the
learning targets. We summarize the general formulation of such a
symmetry-adapted Gaussian process regression model, and how it can be
implemented based on a scheme that generalizes the popular smooth overlap of
atomic positions representation. We give examples of the performance of this
framework when learning the polarizability and the ground-state electron
density of a molecule
Shared Metadata for Data-Centric Materials Science
The expansive production of data in materials science, their widespread sharing and repurposing requires educated support and stewardship. In order to ensure that this need helps rather than hinders scientific work, the implementation of the FAIR-data principles (Findable, Accessible, Interoperable, and Reusable) must not be too narrow. Besides, the wider materials-science community ought to agree on the strategies to tackle the challenges that are specific to its data, both from computations and experiments. In this paper, we present the result of the discussions held at the workshop on "Shared Metadata and Data Formats for Big-Data Driven Materials Science". We start from an operative definition of metadata, and what features a FAIR-compliant metadata schema should have. We will mainly focus on computational materials-science data and propose a constructive approach for the FAIRification of the (meta)data related to ground-state and excited-states calculations, potential-energy sampling, and generalized workflows. Finally, challenges with the FAIRification of experimental (meta)data and materials-science ontologies are presented together with an outlook of how to meet them
Mechanical and Assembly Units of Viral Capsids Identified via Quasi-Rigid Domain Decomposition
Key steps in a viral life-cycle, such as self-assembly of a protective protein container or in some cases also subsequent maturation events, are governed by the interplay of physico-chemical mechanisms involving various spatial and temporal scales. These salient aspects of a viral life cycle are hence well described and rationalised from a mesoscopic perspective. Accordingly, various experimental and computational efforts have been directed towards identifying the fundamental building blocks that are instrumental for the mechanical response, or constitute the assembly units, of a few specific viral shells. Motivated by these earlier studies we introduce and apply a general and efficient computational scheme for identifying the stable domains of a given viral capsid. The method is based on elastic network models and quasi-rigid domain decomposition. It is first applied to a heterogeneous set of well-characterized viruses (CCMV, MS2, STNV, STMV) for which the known mechanical or assembly domains are correctly identified. The validated method is next applied to other viral particles such as L-A, Pariacoto and polyoma viruses, whose fundamental functional domains are still unknown or debated and for which we formulate verifiable predictions. The numerical code implementing the domain decomposition strategy is made freely available
Multiscale Coarse-Graining of the Protein Energy Landscape
A variety of coarse-grained (CG) models exists for simulation of proteins. An outstanding problem is the construction of a CG model with physically accurate conformational energetics rivaling all-atom force fields. In the present work, atomistic simulations of peptide folding and aggregation equilibria are force-matched using multiscale coarse-graining to develop and test a CG interaction potential of general utility for the simulation of proteins of arbitrary sequence. The reduced representation relies on multiple interaction sites to maintain the anisotropic packing and polarity of individual sidechains. CG energy landscapes computed from replica exchange simulations of the folding of Trpzip, Trp-cage and adenylate kinase resemble those of other reduced representations; non-native structures are observed with energies similar to those of the native state. The artifactual stabilization of misfolded states implies that non-native interactions play a deciding role in deviations from ideal funnel-like cooperative folding. The role of surface tension, backbone hydrogen bonding and the smooth pairwise CG landscape is discussed. Ab initio folding aside, the improved treatment of sidechain rotamers results in stability of the native state in constant temperature simulations of Trpzip, Trp-cage, and the open to closed conformational transition of adenylate kinase, illustrating the potential value of the CG force field for simulating protein complexes and transitions between well-defined structural states
- …