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Abstract A linear chain on a simple cubic lattice was
simulated by the Metropolis Monte Carlo method using a
combination of local and non-local chain modifications.
Kink-jump, crankshaft, reptation and end-segment moves
were used for local changes of the chain conformation,
while for non-local chain rearrangements the "cut-and-
paste" algorithm was employed. The statistics of local
micromodifications was examined. An approximate method
for estimating the conformational entropy of a polymer
chain, based on the efficiency of the kink-jump motion
respecting chain continuity and excluded volume con-
straints, was proposed. The method was tested by calculat-
ing the conformational entropy of the undisturbed chain, the
chain under tension and in different solvent conditions
(athermal, theta and poor) and also of the chain confined
in a slit. The results of these test calculations are qualita-
tively consistent with expectations. Moreover, the obtained
values of the conformational entropy of self avoiding chain
with ends fixed over different separations, agree very well
with the available literature data.
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Introduction

The knowledge of the Helmholtz free energy A (or Gibbs
free energy G) of a polymer is essential for understanding
many complex processes involving macromolecules, as for
instance, the adsorption or grafting of polymer chains on

interfaces [1–6], the formation of polymer bridges [7, 8] or
protective layers in processes of flocculation or steric stabi-
lization of colloidal suspensions [8, 9], the formation of
secondary and tertiary structure of proteins [10–12], the
release of the genetic material from the viral capsids
[13–16] and many others. However, in such complex pro-
cesses as those mentioned above, it is not possible to ana-
lytically compute the changes in the free energy and,
particularly, in its component—the conformational entropy.
This problem can be overcome by the use of simulation
methods which provide the ability to study complex systems
in great detail [17–19]. The application of these methods
requires a construction of a simulation model which accu-
rately represents the processes being modeled. The polymer
model appropriate for investigation of the above-mentioned
phenomena should include the excluded volume and ener-
getic interactions. It should also account for deformation of
a polymer molecule from its equilibrium conformation in
the presence of external constraints (e.g., a macromolecule
confined in a nanopore or attached to an impenetrable sur-
face) or/and forces (e.g., a macromolecule bridging two
particles undergoing Brownian motion). These requirements
impose certain restrictions on the choice of the method and
algorithm for the estimation of free energy and conforma-
tional entropy of a polymer molecule. Aiming at the maxi-
mum possible simplicity of the model and taking into
account the features it should include, a linear homopolymer
chain simulated on a lattice by the Metropolis Monte Carlo
(MMC) method [20, 21] was chosen for the study. Constant
length of the chain and fixed positions of terminals were
assumed. The latter assumption arises from the adopted
strategy for the examination of relationship between
the Helmholtz free energy of a polymer molecule and
the deformation extent, based on simulation of confor-
mation of a chain having arbitrarily imposed fixed dis-
tance between its ends.
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In this study an attempt was made to develop a method
permitting estimation of the Helmholtz free energy of a poly-
mer chain on the basis of probabilities of micromodifications
of chain conformation in the MCC simulation. The adopted
elementary moves of the chain followed the generalized
Verdier-Stockmayer algorithm [21–23]. In this algorithm a
number of local moves can be performed depending on a local
chain conformation. The MC simulations using Verdier-
Stockmayer algorithm were shown to reproduce some real
kinetic properties of macromolecules [24, 25]. It was proven,
however, that all local chain length-conserving algorithms are
nonergodic [26, 27]. Although, it is generally assumed that the
systematic errors following from nonergodicity are insignifi-
cant when compared with statistical ones [28–31], particularly
for relatively short (up to 100 monomers) self-avoiding walks
(SAWs) [32]. However, because the model is intended for use
in systems in which the nonergodicity error may be more
pronounced due to the stretching of polymer chain and/or
the presence of space constraints, a hybrid algorithm combin-
ing the local and non-local moves was employed in simula-
tions. The use of non-local algorithm allows elimination of the
nonergodicity problem [27, 32, 33]. In this study, the “cut-
and-paste” method [27] was chosen for non-local modifica-
tions of the chain. The use of the bond fluctuation algorithms
[28] was abandoned because their essential drawback revealed
against the model demands. This drawback is ambiguous
definition of the monomer neighborhood, which implies prob-
lems when the effect of the energy of monomer—monomer or
monomer—solvent molecule interactions on the chain con-
formation has to be considered.

The aim of the study was to examine the statistics of
local micromodifications in the simulation of chain con-
formation by means of the MMC method. The simula-
tions were performed both for free undisturbed chains
and for those whose two terminals were fixed over a
selected distance. Three types of solvent conditions (i.e.,
athermal, theta and poor) were considered. Also, the
chain in the presence of geometric constraints (the chain
in a slit formed by two parallel impenetrable surfaces)
was studied. As a probe of a local chain conformation
and a local environment the kink-jump algorithm was
used. The calculated values of the Helmholtz free ener-
gy of a SAW chain were confronted with the results
available in literature [34], obtained by the expanded
ensemble Monte Carlo method.

The model and simulation method

The majority of results reported in this paper concern the
polymer chain represented by SAW embedded to a simple
cubic lattice of the lattice constant b. One monomer is
identified with the help of a site on the lattice (bead), so

the chain is an ensemble of N consecutive occupied sites.
Mutual positions of beads are limited to the vector set being
a permutation of (0, 0, ±b), which corresponds to the lattice
coordination number ω equal to 6. The simulations were
performed for two different bead numbers N, i.e., N=50 and
100 (the chain of N beads is equivalent to M=N–1 SAW
steps, each of the length b) in a box with the edge length
considerably greater than the contour length of the longer
chain (601b). Periodic boundaries of the simulation box
were applied.

The simulations were completed using the Metropolis
Monte Carlo (MMC) method [27]. In this study we
performed two kinds of simulations: 1) for a free
unperturbed chain which was employed as a reference sys-
tem and 2) for chains of arbitrarily chosen distance LH
between terminal beads of fixed coordinates. In the first
case the initial chain conformation was generated by the
static MC method [27] and next it was randomly modified
using algorithms of the following local micromodifications:
end-bead move (E), kink-jump (K), crankshaft (C) and
reptation (R) motions [28] and two non-local cut-and-paste
modifications: the inversion of a chain piece (I) and the
reflection of a chain piece through a perpendicular bisector
of a straight line joining the first and last bead of this
subchain (F) followed by motion (I) (the modification F is
necessary for ergodicity [27, 33]). In the second case the
simulation started from a regular spiral-like conformation
which was next equilibrated via four types of modifications:
K, C, I and F.

The MC step, defined as the number of modifications
needed to give each of the beads the possibility to move
once, contained N local micromodifications chosen at ran-
dom, thus the frequencies of K and C motions were on
average the same, whereas those of E or R motions (if
applied) were N/2 times lower. The probability of
performing the non-local cut-and paste modification, in-
volving simultaneous changes in coordinates of N/3 beads
on average, was 103 times smaller than that of local modi-
fications. Thus, the ratio between frequencies of attempted
local “internal” moves (i.e., K or C motions), micro-moves
of end beads (i.e., E or R motions) and non-local cut-end-
paste moves per a bead was 1:0.02:0.03, respectively.
Because the increase in the frequency of cut-and-paste
modifications up to 10 times involved no changes in the
results obtained (i.e., the differences between the results
were within the statistical errors of the simulation), it was
assumed that the frequency applied was sufficient to
ensure the ergodicity of the procedure. This frequency
of the non-local modifications allowed efficient simula-
tions. On the other hand, the relatively high frequency of
local modifications ensured the statistical significance of
the probability of K motions, which were used as a
probe of chain conformation.
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In addition to the simulations performed for pure SAW
chains where all molecular interaction energies are assumed
as equal to 0, the conformations of chains immersed in the
theta solvent (εPS=εSS=0, εPP/kBT=−0.2693 [35]) and in
poor solvent (εPS=εSS=0, εPP/kBT=−1) were also simulated.
Symbols εPS, εSS and εPP denote the energies of bead –
solvent molecule, solvent molecule – solvent molecule in-
teractions and the energy assigned to each non-consecutive
pair of beads lying on neighboring lattice sites, respectively.
In the course of these simulations, new conformations were
accepted or rejected by the Metropolis procedure in the
standard way [20, 28].

Some simulations were performed for the chain with
terminal beads attached to two parallel surfaces forming a
slit of the width equal to LH+2b. The surfaces were rigid
and impenetrable to the polymer. They were purely repul-
sive and there was no chain adsorption (athermal surface)
except for the irreversible attachment of the chain ends.
Thus, the influence of surfaces on the polymer conformation
was solely of entropic character.

All the results presented in the paper are averaged over
104 conformations. Each conformation is a result of 106 MC
steps. The first half of motions (i.e., 0.5⋅106 MC steps) were
used for the initial chain thermalization. For the second half
the following parameters characterizing the chain conforma-
tion were computed: the probability of performing a given
move without violation of the continuity of the chain (i.e.,
the probability that the skeletal constraint is satisfied) and
the probability of move execution without violation of the
excluded volume constraint.

The probabilities discussed are described by the symbol
PX(Y)Z, where X is the movement limitation (skeletal or ex-
cluded volume denoted as S and E, respectively), Y is the type
of micromodification (E, K, C or R) and Z (if needed) indicates
the state of the chain (Z=0 for the unperturbed chain).

For comparative purposes, the simulations for the con-
ventional random walk were also performed.

Probabilities of moves

In this paragraph we present the results of calculations of
probabilities of local micromodifications considered for
chains with both free and fixed ends, obtained on the basis

of simulation of chain conformations in athermal conditions.
Table 1 summarizes the values of probabilities predicted
theoretically and obtained from simulations in the case of
free chain. Details of considerations on which the theo-
retical predictions were based are described below. The
probabilities of moves satisfying the chain continuity
constraint and of those satisfying the excluded volume
constraint are considered separately. The results obtained
for the chain with fixed distance between ends are only
briefly presented here; their detailed discussion is given
in further parts of the paper.

The skeleton effect

The obtained values of PS(R)0 and PS(E)0 equal to 1 are
easy to predict since by no means the move of end bead of
the chain can violate the skeleton constraint.

The prediction of PS(K)0 and PS(C)0 is somewhat more
complex. The probability PS(K)0 can be evaluated as fol-
lows. First, note that only corner located beads can perform
kink-jumps, as schematically elucidated in Fig. 1. The prob-
ability that three succeeding beads (indexed as i–1, i, i+1)
form the corner is given by the ratio (ω–2)/(ω–1), as can be
easily deduced from Fig. 2a. The number of possible corners
with vertices on bead i can be additionally reduced by the
occupancy of the vertex adjacent sites by other beads. The
probability of occupancy of a single such site with a given
bead decreases rapidly with its distance from bead i (mea-
sured along the chain) and thus, for instance (see Fig. 2b),
for beads with indices i–3, i–5…, these probabilities are:
1/(ω–1)2, 5/(ω–1)4 and the like. Hence, the value of PS(K)0
can be found from the following equation:

PS Kð Þ0 ¼
ω−2
ω−1

1−
1

ω−1

� �2

−5
1

ω−1

� �4

−…

 !
ð1Þ

as equal to 0.763 which is close to the value determined
from the simulation results (see Table 1).

The calculation of the probability PS(C)0, which is
equivalent to the probability of occurrence of a local
U-shaped conformation, is based on similar consider-
ations as those presented above. At first, let us notice
that the formation of such a conformation can be thought

Table 1 The probabilities of
different types of motions esti-
mated theoretically (theor) and
calculated on basis of the simu-
lation (sim) performed for
unperturbed chains of N=100
and N=50 in the athermal
conditions

Quantity Micromodification

(R)0,theor (R)0,sim (E)0,theor (E)0,sim (K)0,theor (K)0,sim (C)0,theor (C)0,sim

PS N=100 1.000
1.000

1.000
1.000

0.763
0.774

0.103
0.101

N=50 1.000 1.000 0.776 0.100

PE N=100
0.937

0.942
0.937

0.938
0.714

0.695
0.510

0.506

N=50 0.943 0.940 0.696 0.511
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as performed in two steps (see Fig. 3a): 1) the formation
of a corner by beads i–1, i and i+1 (the same as in the
case of kink-jump movement), 2) the addition of a third
edge by suitable location of (i+2)th bead. Then, the
probability of formation of this microconformation is
equal to PS(K)0⋅1/(ω–1). However, the second step can
be hindered by the occupancy of the “suitable” lattice
site by other beads. As it can be deduced from Fig. 3b,
the probabilities that this site is blocked by beads with
indices i–2, i–4… are equal to 1/(ω–1), 3/(ω–1)2… Thus
finally, the probability that the randomly chosen part of
the chain can perform the crankshaft move satisfying the
skeleton constraint reads:

PS Cð Þ0 ¼ PS Kð Þ0
1

ω−1
1−

1

ω−1
−3

1

ω−1

� �2

−…

 !
ð2Þ

The PS(C)0 calculated from Eq. 2 is equal to 0.103 and
roughly agrees with that obtained from the simulation (see
Table 1).

The probabilities of motions not violating the chain con-
tinuity constraint, calculated directly from the simulation
results for the chain with fixed positions of terminal beads,
are presented in Fig. 4. As expected, both probabilities tend
to zero when LH reaches the contour length of the chain.

The excluded volume effect

The probabilities of micromodifications not violating the
excluded volume constraint are also not difficult to predict
in the case of end-segment and reptation moves. The former
move, if permitted, changes the orientation of a selected end

bead by 90° or 180°, whereas the latter move cuts-off (with
the probability equal to 1) one bead from either end of the
chain and reattaches it to the opposite chain end. Thus, one
can consider these probabilities to be measures of the num-
ber of vacant lattice sites adjacent to the selected end bead.
One can also notice, that the product PE(R)0(ω–1) is equiv-
alent to the effective coordination number of the lattice

ωeff ¼ PE Rð Þ0 ω−1ð Þ ð3Þ
which was used for calculation of the conformational entro-
py by means of the statistical counting method (SCM) based
on the static MC procedure [36, 37]. Assuming that the
value of ωeff may be substituted by the average value of
the infinitely long chain (for N→∞ ωeff =4.6839 [38]) the
probability PE(R)0 equal to 0.937 is obtained, which is
similar to that found from the simulation for the chain of
N=100.

Prediction of the PE(K)0 probability is more complex. As
results from Fig. 5, this probability depends on the bead
location in the chain and it assumes the highest values (close
to PE(R)0 and PE(E)0) at the chain ends, rapidly decreasing

Fig. 1 The kink-jump motion trials for two different locations of a
bead in the chain a the forbidden move, b the permitted move

Fig. 2 Illustration of estimation of PS(K)0: a possible conformations
of a chain fragment composed of three beads with indices i–1, i and i+
1, b a possible location of (i–3)th bead which reduces the number of
corner forming conformations (in red – the chain fragment whose
formation is disallowed)

Fig. 3 Illustration of the estimation of PS(C)0: a a possible conforma-
tion of a chain fragment composed of four beads with indices i–1, i, i+
1 and i+2, b an exemplary possible (i–4)th bead location disallowing
the completion of U-shaped conformation by suitable orientation of (i+
2)th bead (in red – the chain fragment whose formation is disallowed)

Fig. 4 The influence of LH value on probabilities PS(K) and PS(C).
The horizontal lines indicate corresponding probabilities determined
for the free chain (SAW, N=100)
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to a certain almost constant value when the bead distance
from the ends (measured along the chain) increases. Such a
character of this dependence is consistent with intuitive
expectation, and thus allows a conclusion that PE(K)0 pro-
vides information about the likelihood of vacancy of a site
adjacent to ith single bead of the chain.

In order to find a correlation between the probability PE(K)0
and the number of vacant sites around the chain let us analyze
the occupancy of the site adjacent to a single ith bead. The
probability that the site is not empty can be considered as the
probability of the union of two independent events: the occu-
pation of the site by a bead with index lower than i and the site
occupancy by a bead with index larger than i. Assuming that
these two events can occur with the same probability X, the site
occupation probability is then equal to 2X–X2. Now, let us
consider the probability Y of occupancy of the goal site of a
kink-jumpmove. Since this site has two neighbors (as shown in
Fig. 6a), the probability of its occupancy is again equivalent to
the probability of the union of two independent events. Thus,

on the basis of the above reasoning, we can write:

Y ¼ 2 2X−X 2
� �

− 2X−X 2
� �2 ð4Þ

Now in turn, let us notice that the number n2 of possible
chain trajectories passing through a site neighboring two
beads (where the kink-jump move is permitted) is lower
than the respective number n1 for a site neighboring only
one bead (where the kink-jump is disallowed). This means
that the probability Z of occupancy of a site adjacent to the
chain disallowed for the kink-jump move is higher than the
probability Y by a factor w:

Z ¼ wY ð5Þ
where w=n1/n2. In order to determine the value of w one
should count all possible chain trajectories passing
through single lattice sites neighboring one and two beads,
respectively. Here, for the sake of simplicity, let us con-
sider two step trajectories only. In such a case we obtain
n2=20, n1=25 and hence w=1.25, as explained in Fig. 6.
(For lattices with other coordination number w=(ω–1)/(ω–
2)). Finally, the probability PE(K)0 that the kink-jump
move does not violate the excluded volume restriction,
i.e., that the target site is empty, is equal to 1–Z. We
should emphasize here, however, that the estimate of
PE(K)0 based on considerations presented above is very
rough and valid only for free SAW chains, for which one
can assume the long distance excluded volume to be
small.

Finally, combining Eqs. 4 and 5 and assuming that X=1–
PE(R)0, we get the following relation:

PE Kð Þ0 ¼
5

4
PE Rð Þ04−

1

4
ð6Þ

From Eq. 6 we obtain PE(K)0 equal to 0.734 if the value
of PE(R)0 calculated from simulation results is used or
PE(K)0=0.714 if the value of PE(R)0 determined on the
basis of Eq. 3 is employed. Taking into account that these
results are only rough estimates their agreement with the
value of PE(K)0=0.695 obtained from simulation (Table 1)
seems to be satisfactory.

Having evaluated the probability of vacancy of a lattice
site neighboring one bead (assumed to be equal to 0.714),
one can find the probability PE(C)0 that two such adjacent
sites are empty (for the crankshaft move to be permitted) as
equal to (PE(K)0)

2, obtaining the value 0.510, which is close
to that determined from the simulation.

The results obtained for the chain with fixed ends are
presented in Fig. 7. The values of both PE(K) and PE(C)
increase with increasing end-to-end distance reaching the
value of 1 for the fully stretched chain (i.e., LH→bN ⇒
PE(K)→1).

Fig. 5 The dependence of the relative probability that a bead adjacent
site is empty on the position of the bead along the chain (SAW model,
N=100, results obtained from a single simulation)

Fig. 6 Visualization of the neighborhood of two local microconformations
containing a bead (indicated by the arrow) which a can and b cannot be
moved by the kink-jump. Note that for the move to be permitted the target
site has to neighbor two other beads, while the other “disallowed” sites
neighbor one bead only (see blue lines in the figure). The probability of the
site occupancy by other, more distant beads is different in both cases. In red
there are marked the possible trajectories of chain fragment composed of
three beads passing through the site a allowed and b disallowed for the
kink-jump move, whose numbers are equal to 20 and 25, respectively

J Mol Model (2013) 19:3659–3670 3663



Conformational entropy of a chain with fixed ends

In this section we present a simplified approach to
analytical evaluation of the conformational entropy of
an SAW chain in a state of conformation distorted by
fixing the ends in a selected distance. Because the ideal
chain model based on the RW chain can be solved
exactly, our approach will thus be to consider the ran-
dom walk first and then to discuss the impact of the
excluded volume effect.

The number of elementary steps M needed to generate
the ideal chain is simply the sum of elemental steps
performed in different directions:

M ¼ MXþ þMYþ þMZþ þMX− þMY− þMZ− ð7Þ
where MX+, MY+ and MZ+ denote numbers of steps along x,
y and z axes, in positive directions, while MX−, MY− and
MZ− are the step numbers in the negative directions. The
number of all possible conformations of the chain formed by
M steps can be expressed as:

Ω ¼ M !

MXþ!MYþ!MZþ!MX−!MY−!MZ−!
: ð8Þ

There is no preferential direction in equilibrium. Now, let
us assume that the chain is extended into+z direction. This
elongation will be compensated by contraction in other di-
rections. Assuming the same extent of contraction in all
directions the number Ω of all possible conformations reads:

Ω ¼ M !

MZ−!
5MZþ!

: ð9Þ

Equation 9 can be rewritten in a more general form:

Ω ¼ Γ M þ 1ð Þ
Γ MP1 þ 1ð Þ5Γ ML3 þ 1ð Þ ð10Þ

where Γ denotes the Euler gamma function.
The number of steps should fulfill the following require-

ments:

M ¼ MZþ þ 5MZ− ð11Þ

L

b
¼ MZþ−MZ− ð12Þ

where L is the average z coordinate of one end bead in the
deformed chain if the other end bead is located at z=0.

Replacing the number of steps, M, by the number of
beads N (M=N–1) and generalizing the above reasoning
over different lattice types, one can write the following
expression for the conformational entropy of a stretched
chain

S

kB
¼ ln Ωð Þ¼ ln

Γ Nð Þ
Γ N−1−L=b

ωeff
þ 1

� �ωeff−1
Γ

N−1þ ωeff−1ð ÞL=b
ωeff

þ 1

� �
0
BB@

1
CCA

ð13Þ
where ωeff (equal to 6 for RW model) can be general-
ized to the effective coordination number of any other
model lattice.

The entropy of an undeformed chain is maximum (Smax)
for L=0 when the chain assumes the relaxed coil-like con-
formation. Applying the Stirling approximation

ln Γ xþ 1ð Þð Þ≅ln 2πð Þ1=2 þ xþ 1

2

� �
ln xð Þ−x ð14Þ

this entropy Smax is given by:

Smax

kB
¼ ln Cð Þ þ 1

2
1−ωeffð Þln Nð Þ þ N ln ωeffð Þ ð15Þ

where C is a constant given by:

C ¼ exp 1−ωeffð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ln 2πð Þ

p� �
þ 1

2
ωeff ln ωeffð Þ ð16Þ

Table 2 presents the estimates of Smax obtained on the
basis of Eq. 15 for several models of polymer chains: RW,
NRRW and SAW. For the sake of comparison there are also
the corresponding values Smax

* calculated using other ap-
proaches (for details see the footnote to Table 2). As seen,
in all cases the results show a good agreement (the greater N
the better the coincidence between the results). This agree-
ment allows one to assume that Eq. 13 can be also applied
for the approximate estimation of conformational entropy of

Fig. 7 The dependencies of PE(K) and PE(C) on LH. The horizontal
lines indicate the corresponding probabilities determined for the free
chain—PE(K)0 and PE(C)0, respectively (SAW model, N=100)
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uniaxially deformed (elongated or shrunk) chains, at least
those modeled by RW, NRRW and SAWs.

Equation 13 relates the chain entropy to the average
coordinate L, or, in other words, the magnitude of the
average value of the projection of the end-to-end dis-
tance LH onto a particular axis (here, onto the z-axis).
In the case of ideal chain the LH distance should fulfill
two requirements: i) for an unperturbed chain, for which
L=0, the distance LH should be equivalent to the root-
mean-squared (rms) end-to-end distance 〈RH

2〉1/2 which
is equal to (bM1/2) [42]

L ¼ 0 ⇒ LH ¼ bM 1=2 ð20Þ
ii) for a fully stretched chain the distance L is equiva-
lent to the contour length of the chain

L ¼ bM ⇒ LH ¼ bM : ð21Þ
Assuming that there is a linear dependence between L

and LH and generalizing the above considerations to any
chain model one obtains:

L ¼ LH−〈R2
H〉

ν

1−Mv−1 ð22Þ

where 〈RH
2〉ν corresponds to the rms end-to-end distance of

an unperturbed chain and v denotes the Flory’s exponent
[27]. The value 〈RH

2〉ν is related to the number of stepsM by
the relationship:

〈R2
H〉

ν ¼ bM ν : ð23Þ

The application of Eq. 22 for determination of the depen-
dence between L and LH requires the knowledge of Flory’s
exponent for a given model or polymer/solvent system. For

the real chains (i.e., with the excluded volume interactions)
this exponent is equal to 3/5 for good solvents, 1/2 for theta
solvents and 1/3 for poor solvents [27]. Figure 8 presents the
dependencies of the conformational entropy of a chain on
the distance LH between its ends, calculated on the basis of
Eqs. 13 and 22 for some chosen chain models. As seen, the
curves go through maxima at LH=〈RH

2〉ν, which is in accor-
dance with expectation.

In the calculation of S=f(LH) for the SAW model, which
is presented in Fig. 8, a constant value of ωeff=4.6839 (valid
for N→∞) was assumed. However, for the chains with
excluded volume interactions the value of ωeff depends on
LH, because the probability of nearest-neighbor site

Table 2 Comparison of polymer chain entropies Smax calculated from
Eq. 13 for various chain models and two different chain lengths with
the corresponding values S�max obtained on the basis of equations

specified below the table. The corresponding relative standard devia-
tions of the results, σ, are also reported

System ω ωeff N=1000 N=10,000

Smax/kB S�max/kB 100σ Smax/kB S�max/kB 100σ

2D RW 4 4 1377 1385 0.58 13850 13863 0.09

3D RW 6 6 1776 1790 0.78 17896 17918 0.12

2D NRRW 4 3 1092 1098 0.54 10977 10986 0.08

3D NRRW 6 5 1597 1608 0.68 16077 16094 0.11

3D SAW 6 4.6839 [38] 1533 1544 0.71 15426 15441 0.10

*) In calculation of S�max values, depending on the chain model, different relations were applied:

a) for the RW model: S�max
kB

¼ M ln ωð Þ 17ð Þ
b) for the NRRW model: S

�
max
kB

¼ ln ωð Þ þ M−1ð Þln ω−1ð Þ 18ð Þ
c) for the SAW model: S

�
max
kB

¼ ln C0ð Þ þ γ−1ð ÞlnM þM ln ωeff ;∞
� �

19ð Þ
where C’=1.17, γ=7/6 and ωeff,∞=4.6838 for the 3D linear, infinitely long macromolecule in the athermal solution [38–41]

Fig. 8 Dependencies of conformational entropies vs. fixed end-to-end
distance calculated for 2D RW, 3D RW and 3D SAW (N=100).
Perpendicular lines indicate rms end-to-end distances of RW and
SAW chains equal to 10b and 15.8b, respectively. The rms end-to-
end distance for RW model is independent on the dimensionality of the
lattice
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occupancy changes with the extent of chain elongation. And
thus, one can easily deduce that when the chain is highly
stretched the excluded volume effect becomes negligibly
small and ωeff tends to 5 if the simple cubic lattice is
considered or to ω–1 in a general case.

Unfortunately, except for the limiting case of fully ex-
tended chain, the determination of ωeff is not straightforward
since there is no analytical way of finding this parameter. In
the next section of the paper we propose a method for the
estimation of ωeff on the basis of selected observables which
are directly accessible from MC simulations. Moreover, to
extend the applicability of Eqs. 13 and 22 to the case of
chains in constrained environments we propose the employ-
ment of such observables in the quantification of the degree
of chain deformation instead of LH parameter. The meaning
of LH in the case of confined chains is sometimes unclear
and, what is more important, not corresponding to the chain
deformation degree. For instance, when a linear macromol-
ecule is confined in a L- or U-shaped nanochannel, the
straight line connecting ends of the molecule may cross
the channel walls and its length will not correspond to the
extent of the molecule elongation.

Calculation of LH and ωeff parameters from simulation
results

End-to-end distance

As the probability PS(K) is related to a selected separation
between chain ends (Fig. 4) one can try to apply the value of
this probability for the estimation of L or LH parameters. For
all the models studied here (2D RW, 3D RW, 2D SAW and
3D SAW) the dependencies of L versus the ratio
PS(K)/PS(K)0 are of similar character: at L=0 (free chain)
the value of PS(K)/PS(K)0 is approximately 1 and then with
increasing L it gradually decreases, approaching zero at L=
bM (as seen in Fig. 9a). The shape of the curves suggests an
exponential relationship between these two variables. Actu-
ally, as can be seen in Fig. 9b, plots of (1–PS(K)/PS(K)0)
against L on log-log coordinates give nearly straight lines
with slopes dependent on the model considered.

From the detailed analysis of the results collected in
Fig. 9 the following relationship was derived:

L

bN
¼ 1−

PS Kð Þ
PS Kð Þ0

� �
1−

PS Kð Þ
PS Kð Þ0

				
				
l−1

ð24Þ

where the exponent 1 assumes values of 0.40, 0.40, 0.27
and 0.33, respectively for 2D RW, 3D RW, 2D SAWand 3D
SAW. From the comparison of obtained values of 1 with the
corresponding Flory’s exponents (and keeping in mind that
for RW model the Flory’s exponent is independent of the

lattice dimension [27, 30], one can find the following simple
relation between 1 and v:

1 ¼ 1

5ν
: ð25Þ

In Fig. 10a the values of L calculated on the basis of
probabilities PS(K) obtained from simulations are compared
with the corresponding values assumed for different chain
models. This comparison indicates a good agreement be-
tween the retrieved and assumed values and thus allows a
conclusion that Eq. 24 can be used for the calculation of
parameter L. Although in the range of small PS(K) values, in
which the equation becomes numerically unstable, there is a
significant error in the L estimation. The described method
of the determination of L is independent of the chain length,
as can be concluded from inspection of Fig. 10b.

Effective coordination number

Equation 3 allows the calculation of the effective coordina-
tion number ωeff on the basis of the probability PE(R).
However, the applicability of this method of ωeff determina-
tion is restricted to a free chain. Searching for an alternative
method and having in mind the approximate relation 6 one
can try to use PE(K) instead of PE(R) as a local probe of ωeff,
and thus omit the requirement of free ends, necessary for
PE(R) calculation. Assuming that the validity of Eq. 6 can
be extended to deformed chains with fixed ends and by
combining it with Eq. 3 one obtains:

ωeff ¼ ω−1ð Þ 4PE Kð Þ þ 1

5

� �1=4

: ð26Þ

Fig. 9 Plots of: a PS(K)/PS(K)0 against L (inset: enlarged part of
the dependence around L=0, coordinates are not marked) and b
(1–PS(K)/PS(K)0) against L in log-log scale for positive values of
variables; N=100
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Equation 26 relates ωeff with PE(K). But, as could have
been foreseen, its applicability is limited. For instance, it fails
in predicting the results for boundary conditions. Namely, the
solution of Eq. 26 does not satisfy the relations which can be
written for two limiting states of the chain: fully stretched and
fully shrunk. The corresponding relations are as follows:

lim
PE Kð Þ→0

ωeff ¼ κ ð27Þ

lim
PE Kð Þ→1

ωeff ¼ 5 ð28Þ

where κ→1 when N→∞ (i.e., when the number of all
monomers located at the surface of shrunk coil is negligibly
small as compared to N).

In the search for a relationship between ωeff and PE(K),
which would be of a more general applicability than Eq. 26,
we made use of the results of simulations performed for the
models including intra-chain interactions, namely, for poly-
mer chains in theta and poor solvents. The results obtained
for such models allow direct and independent determination
of both ωeff and PE(K). The attractive intra-chain interac-
tions, which exist in theta (χ=1/2) and poor (χ>1/2) sol-
vents, modify the value of ωeff as compared to that in
athermal environment. Moreover, these interactions change
the internal energy U of the model to be non-zero. The
average value of U is given by:

U

kBT
¼〈XN

i¼1

Xω
j¼1

εi; j− N−1ð Þ εPP þ εSS
2 〉 ð29Þ

where εij denotes the interaction energy of the ith bead with
an adjacent jth lattice site. The contact interaction between

the beads i and j is taken into account only when they are on
the adjacent lattice sites, but not on the adjacent sites along
the chain. Depending on whether the site is empty or occu-
pied by another bead, the value of εij is equal to εPS or (εPP+
εSS)/2, respectively. Because the variables ωeff and PE(K)
are correlated (the occupancy of a chain adjacent site by
another bead involves a simultaneous decrease in ωeff and
increase in U), the function describing this correlation can
be used for the calculation of ωeff.

Using the values of U determined from the simulations in
which εPS=εSS=0 was assumed, the average value of ωeff

can be calculated form the following equation:

ωeff ¼ 1−
2U

εPP N ω−2ð Þ þ 2 ω−1ð Þð Þ
� �

ω−1ð Þ : ð30Þ

The values of ωeff obtained in this way are summarized in
Fig. 11, which shows the relation between ωeff and PE(K) in
the form of a function ((ω–1)–ωeff)

1/2=f(1–PE(K)). As seen,
all the data points lie quite well along a straight line whose
slope is equal to 2.0, indicating that the searched relation-
ship between ωeff and PE(K) is well approximated by the
equation

ωeff ¼ ω−1ð Þ−4 1−PE Kð Þð Þ2 : ð31Þ

It is noteworthy that Eq. 31 fulfills Eqs. 27 and 28.
It follows from Fig. 12a that, as expected, when LH tends to
the contour length of the chain, the value of ωeff calculated
on the basis of Eq. 30 tends to ω–1. The most distinct
decrease in ωeff accompanying the decrease in LH is seen
in the case of a chain in poor solvent conditions, which is
also as expected. The results collected in Fig. 12b indicate

Fig. 10 The plots of the values of L calculated on the basis of
probabilities PS(K) against the assumed L values: a for different chain
models, b for two different chain lengths (3D SAW). The slope of the
straight line is equal to 1

Fig. 11 The values of the expression ((ω–1)–ωeff)
1/2 plotted

against 1–PE(K), obtained for a chain of N=100 in theta and
poor solvents. The regression coefficient of the straight line indi-
cated in the figure is equal to 2
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that the chain length has only a minor influence on the
obtained ωeff values, at least in the studied N range (N=50
and N=100).

Conformational entropy and energy of the chain
in exemplary systems

In this section, the results of calculations of the conforma-
tional entropy and energy of a polymer, obtained by means
of the method based on the use of probabilities PS(K) and
PE(K), are presented. The calculations were performed for

different selected end-to-end distances and solvent condi-
tions, as well as in the presence of geometrical constraints.

Figure 13a presents the entropies S of a SAW chain of
N=50 obtained at different LH values. These results are
compared with the corresponding results available in litera-
ture and obtained with the expanded ensemble Monte Carlo
method [34]. Practically, in the whole range of LH values a
very good agreement is observed. It is also noteworthy that
as expected, the maximum on the curve S(LH) occurs at the
LH value corresponding to the rms distance between ends of
a free chain: RH/bM ≈0.20 for SAW of N=50 and v=3/5
(Eq. 23). For the sake of comparison with the results
reported in ref. [34], the stretching forces F required to

Fig. 12 The plots of the values of ωeff calculated from Eq. 30 against
the assumed values of LH for a different solvent conditions, N=100 and
b two different lengths of SAWs

Fig. 13 The relationships of a S vs LH and b F vs LH; SAW chain of
N=50. For comparison, the same dependencies calculated by means of
expanded ensemble MC method [34] (squares) are shown

Fig. 14 The comparison of relationships of a S vs LH, b U vs LH and c)
A vs LH, which were determined for three different solvent conditions:
χ=0 (athermal), χ=1/2 (theta) and 1/2<χ≈2 (poor), N=50. The LH
values corresponding to minima in the free energy, predicted by
Eq. 23, are marked by vertical lines

Fig. 15 The entropy of SAW chain (N=100) with ends attached to the
opposite parallel surfaces versus the surface separation (circles). For
comparison, the corresponding results for the chain with fixed ends but
in the open space are indicated (squares)

3668 J Mol Model (2013) 19:3659–3670



extend the chain to assumed end-to-end separations were
also calculated. The corresponding values of F were found
from the following relation:

F ¼ −T
∂S
∂LH

� �
: ð32Þ

As illustrated in Fig. 13b, the obtained results are in fairly
good agreement with those of ref. [34].

Using the method described in this paper, the values
of Helmholtz free energies A of the chain of N=100 in
different solvent conditions (i.e., of different values of
Flory’s interaction parameter: χ=0, χ=1/2 and 1/2<χ≈2)
were calculated from:

A

kBT
¼ U

kBT
−

S

kB
: ð33Þ

The obtained results, together with corresponding results
for U and S, are shown in Fig. 14. As seen, for large
extensions (large LH) the conformational entropy of the
chain is practically independent of the solvent condition
(Fig. 14a). It can be explained by the fact that in the case
of strongly stretched chain the probability of bead-bead
contacts (which mimic inter-monomer interactions) is very
small and thus its influence on the chain entropy is also
small. For intermediate and low extensions the entropy of
the chain in solvents of χ≥1/2 is smaller than in the athermal
condition, because of smaller values of ωeff (compare
Fig. 12a). As seen in Fig. 14b, in non-athermal conditions
the decrease in LH is accompanied by a monotonic decrease
in internal energy of the chain. The superposition of ener-
getic and entropic contributions produces the A(LH) depen-
dencies exhibiting minima (Fig. 14c). In spite of the low
precision of estimation of positions of these minima (which
is because of relatively small length of the examined chain,
N=100), it can be found out that they occur at LH values
roughly equal to rms end-to-end distances of the free chain
in corresponding solvent conditions (the values of RH/bM
calculated from Eq. 23 are 0.16, 0.10 and 0.05 for athermal,
theta and poor solvent conditions respectively).

The described method of estimation of the conformation-
al entropy of macromolecules was also tested for a chain in
the space with geometrical constraints. The entropies of
SAW chain with its ends attached to two opposite parallel
plane surfaces which were also assumed to be impenetrable,
infinite and non-interacting with the chain except its termi-
nals were calculated at different separations between the
surfaces. The results obtained are collected in Fig. 15 and
compared with the entropies found for the chain in the open
space when selected distance LH between ends was equal to
that in the presence of the surfaces. For the confined chain in

the range of small plane separations (LH+2b≤〈RH2〉v) the
calculated entropies are clearly smaller as compared to those
of the chain in the open space. This can be elucidated by the
excluded volume effect of the surfaces, which reduces the
value of ωeff. From Fig. 15, it can also be deduced that for a
chain with free ends the average end-to-end distance in the
equilibrium conformation is longer in the presence of the
surfaces.

Conclusions

The probabilities of different types of micromodifications of
chain conformation which were found from the performed
MMC simulations agree reasonably well with the results
obtained on the basis of approximate theoretical consider-
ations regarding the nearest environment of a local chain
conformation. The proposed method for the estimation of
conformational entropy of a polymer chain using the prob-
abilities of kink-jump moves, PS(K) and PE(K), provides
results consistent with literature [34] when applied to a
deformed chain (i.e., whose two ends are fixed over a
distance LH different from the most probable end-to-end
separation of an undisturbed chain). In the range of small
deformations the entropy estimation accuracy was low be-
cause of the numerical instability of Eq. 31. The dependen-
cies of the conformational entropy S and free energy A of the
chain on the imposed end-to-end distance LH, calculated on
the basis of probabilities PS(K) and PE(K) for different
solvent conditions as well as in the presence of the geomet-
ric constraints in the simulation space, qualitatively capture
major features of the expected behavior of a polymer chain
under such “test” conditions.
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