677 research outputs found

    First polarimetric observations and modeling of the FeH F^4 Delta-X^4 Delta system

    Full text link
    Lines of diatomic molecules are more temperature and pressure sensitive than atomic lines, which makes them ideal tools for studying cool stellar atmospheres an internal structure of sunspots and starspots. The FeH F^4 Delta-X^4 Delta system represents such an example that exhibits in addition a large magnetic field sensitivity. The current theoretical descriptions of these transitions including the molecular constants involved are only based on intensity measurements because polarimetric observations have not been available so far, which limits their diagnostic value. We present for the first time spectropolarimetric observations of the FeH F^4 Delta-X^4 Delta system measured in sunspots to investigate their diagnostic capabilities for probing solar and stellar magnetic fields. We investigate whether the current theoretical model of FeH can reproduce the observed Stokes profiles including their magnetic properties. The polarimetric observations are compared with synthetic Stokes profiles modeled with radiative transfer calculations. This allows us to infer the temperature and the magnetic field strength of the observed sunspots. We find that the current theory successfully reproduces the magnetic properties of a large number of lines in the FeH F^4 Delta-X^4 Delta system. In a few cases the observations indicate a larger Zeeman splitting than predicted by the theory. There, our observations have provided additional constraints, which allowed us to determine empirical molecular constants. The FeH F^4 Delta-X^4 Delta system is found to be a very sensitive magnetic diagnostic tool. Polarimetric data of these lines provide us with more direct information to study the coolest parts of astrophysical objects.Comment: 4 pages, 3 figure

    Flip-flop phenomenon: observations and theory

    Full text link
    In many active stars the spots concentrate on two permanent active longitudes which are 180 degrees apart. In some of these stars the dominant part of the spot activity changes the longitude every few years. This so-called flip-flop phenomenon has up to now been reported in 11 stars, both single and binary alike, and including also the Sun. To explain this phenomenon, a non-axisymmetric dynamo mode, giving rise to two permanent active longitudes at opposite stellar hemispheres, is needed together with an oscillating axisymmetric magnetic field. Here we discuss the observed characteristics of the flip-flop phenomenon and present a dynamo solution to explain them.Comment: 4 pages, 5 figures, contribution to the conference "Dynamos of the Sun, Stars and Planets", to be published in AN Volume 32

    The first close-up of the "flip-flop" phenomenon in a single star

    Full text link
    We present temperature maps of the active late-type giant FK Com which exhibit the first imagining record of the ``flip-flop'' phenomenon in a single star. The phenomenon, in which the main part of the spot activity shifts 180 degrees in longitude, discovered a decade ago in FK Com, was reported later also in a number of RS CVn binaries and a single young dwarf. With the surface images obtained right before and after the ``flip-flop'', we clearly show that the ``flip-flop'' phenomenon in FK Com is caused by changing the relative strengths of the spot groups at the two active longitudes, with no actual spot movements across the stellar surface, i.e. exactly as it happens in other active stars.Comment: 4 pages, accepted by A&A Letter

    Paschen-Back effect in the CrH molecule and its application for magnetic field measurements on stars, brown dwarfs, and hot exoplanets

    Full text link
    We investigated the Paschen-Back effect in the (0,0) band of the A6{\Sigma}+-X6{\Sigma}+ system of the CrH molecule, and we examined its potential for estimating magnetic fields on stars and substellar objects, such as brown dwarfs and hot exoplanets. We carried out quantum mechanical calculations to obtain the energy level structure of the electronic-vibrational-rotational states considered both in the absence and in the presence of a magnetic field. Level mixing due to magnetic field perturbation (the Paschen-Back effect) was consistently taken into account. Then, we calculated frequencies and strengths of transitions between magnetic sublevels. Employing these results and solving numerically a set of the radiative transfer equations for polarized radiation, we calculated Stokes parameters for both the individual lines and the (0,0) band depending on the strength and orientation of the magnetic field. We demonstrate that magnetic splitting of the individual CrH lines shows a significant asymmetry due to the Paschen-Back effect already at 1 G field. This leads to a considerable signal in both circular and linear polarization, up to 30 percent at the magnetic field strength of more than 3 kG in early L dwarfs. The polarization does not cancel out completely even at very low spectral resolution and is seen as broad-band polarization of a few percent. Since the line asymmetry depends only on the magnetic field strength and not on the filling factor, CrH lines provide a very sensitive tool for direct measurement of the stellar magnetic fields on faint cool objects, such as brown dwarfs and hot Jupiters, observed with low spectral resolution.Comment: 11 pages, 6 figures, to be published in A&

    Molecules as magnetic probes of starspots

    Full text link
    Stellar dynamo processes can be explored by measuring the magnetic field. This is usually obtained using the atomic and molecular Zeeman effect in spectral lines. While the atomic Zeeman effect can only access warmer regions, the use of molecular lines is of advantage for studying cool objects. The molecules MgH, TiO, CaH, and FeH are suited to probe stellar magnetic fields, each one for a different range of spectral types, by considering the signal that is obtained from modeling various spectral types. We have analyzed the usefulness of different molecules (MgH, TiO, CaH, and FeH) as diagnostic tools for studying stellar magnetism on active G-K-M dwarfs. We investigate the temperature range in which the selected molecules can serve as indicators for magnetic fields on highly active cool stars and present synthetic Stokes profiles for the modeled spectral type. We modeled a star with a spot size of 10% of the stellar disk and a spot comprising either only longitudinal or only transverse magnetic fields and estimated the strengths of the polarization Stokes V and Q signals for the molecules MgH, TiO, CaH, and FeH. We combined various photosphere and spot models according to realistic scenarios. In G dwarfs, the molecules MgH and FeH show overall the strongest Stokes V and Q signals from the starspot, whereas FeH has a stronger Stokes V signal in all G dwarfs, with a spot temperature of 3800K. In K dwarfs, CaH signals are generally stronger, and the TiO signature is most prominent in M dwarfs. Modeling synthetic polarization signals from starspots for a range of G-K-M dwarfs leads to differences in the prominence of various molecular signatures in different wavelength regions, which helps to efficiently select targets and exposure times for observations.Comment: 9 pages, 5 figures, 1 tabl

    Spectropolarimetric observations of cool DQ white dwarfs

    Full text link
    Following our recent discovery of a new magnetic DQ white dwarf (WD) with CH molecular features, we report the results for the rest of the DQ WDs from our survey. We use high signal-to-noise spectropolarimetric data to search for magnetic fields in a sample of 11 objects. One object in our sample, WD1235+422, shows the signs of continuum circular polarization that is similar to some peculiar DQs with unidentified molecular absorption bands, but the low S/N and spectral resolution of these data make more observations necessary to reveal the true nature of this object.Comment: 4 pages, 4 figures. Accepted for publication in Astronomy & Astrophysic

    Center-to-limb polarization in continuum spectra of F, G, K stars

    Full text link
    Context. Scattering and absorption processes in stellar atmosphere affect the center-to-limb variations of the intensity (CLVI) and the linear polarization (CLVP) of stellar radiation. Aims. There are several theoretical and observational studies of CLVI using different stellar models, however, most studies of CLVP have concentrated on the solar atmosphere and have not considered the CLVP in cooler non-gray stellar atmospheres at all. In this paper, we present a theoretical study of the CLV of the intensity and the linear polarization in continuum spectra of different spectral type stars. Methods. We solve the radiative transfer equations for polarized light iteratively assuming no magnetic field and considering a plane-parallel model atmospheres and various opacities. Results. We calculate the CLVI and the CLVP for Phoenix stellar model atmospheres for the range of effective temperatures (4500K - 6900K), gravities (log g = 3.0 - 5.0), and wavelengths (4000 - 7000 {\AA}), which are tabulated and available at the Strasbourg astronomical Data Center (CDS). In addition, we present several tests of our code and compare our results with measurements and calculations of CLVI and the CLVP for the Sun. The resulting CLVI are fitted with polynomials and their coefficients are presented in this paper. Conclusions. For the stellar model atmospheres with lower gravity and effective temperature the CLVP is larger.Comment: 10 pages, 8 figure
    • …
    corecore