158 research outputs found

    Photon trajectories in incoherent atomic radiation trapping as Levy flights

    Get PDF
    Photon trajectories in incoherent radiation trapping for Doppler, Lorentz, and Voigt line shapes under complete frequency redistribution are shown to be Levy flights. The jump length (r) distributions display characteristic long tails. For the Lorentz line shape, the asymptotic form is a strict power law r ^ (-3/2), while for Doppler the asymptotic is r ^ -2 (ln r)^ (-1/2). For the Voigt profile, the asymptotic form always has a Lorentz character, but the trajectory is a self-affine fractal with two characteristic Hausdorff scaling exponents

    Photonic superdiffusive motion in resonance line radiation trapping - partial frequency redistribution effects

    Get PDF
    The relation between the jump length probability distribution function and the spectral line profile in resonance atomic radiation trapping is considered for Partial Frequency Redistribution (PFR) between absorbed and reemitted radiation. The single line Opacity Distribution Function [M.N. Berberan-Santos et.al. J.Chem.Phys. 125, 174308 (2006)] is generalized for PFR and used to discuss several possible redistribution mechanisms (pure Doppler broadening, combined natural and Doppler broadening and combined Doppler, natural and collisional broadening). It is shown that there are two coexisting scales with a different behavior: the small scale is controlled by the intricate PFR details while the large scale is essentially given by the atom rest frame redistribution asymptotic. The pure Doppler and combined natural, Doppler and collisional broadening are characterized by both small and large scale superdiffusive Levy flight behaviors while the combined natural and Doppler case has an anomalous small scale behavior but a diffusive large scale asymptotic. The common practice of assuming complete redistribution in core radiation and frequency coherence in the wings of the spectral distribution is incompatible with the breakdown of superdiffusion in combined natural and Doppler broadening conditions

    Ditopic Receptors Based on Dihomooxacalix[4]arenes Bearing Phenylurea Moieties With Electron-Withdrawing Groups for Anions and Organic Ion Pairs

    Get PDF
    Two bidentate dihomooxacalix[4]arene receptors bearing phenylurea moieties substituted with electron-withdrawing groups at the lower rim via a butyl spacer (CF3-Phurea 5b and NO2 Phurea 5c) were obtained in the cone conformation in solution, as shown by NMR. The X-ray crystal structure of 5b is reported. The binding affinity of these receptors toward several relevant anions was investigated by 1H NMR, UV-Vis absorption in different solvents, and fluorescence titrations. Compounds 5b and 5c were also tested as ditopic receptors for organic ion pairs, namely monoamine neurotransmitters and trace amine hydrochlorides by 1H NMR studies. The data showed that both receptors follow the same trend and, in comparison with the unsubstituted phenylurea 5a, they exhibit a significant enhancement on their host-guest properties, owing to the increased acidity of their urea NH protons. NO2-Phurea 5c is the best anion receptor, displaying the strongest complexation for F 12, closely followed by the oxoanions BzO 12, AcO 12, and HSO4-. Concerning ion pair recognition, both ditopic receptors presented an outstanding efficiency for the amine hydrochlorides, mainly 5c, with association constants higher than 109 M 122 in the case of phenylethylamine and tyramine

    Conventional vs. Microwave-or mechanically-assisted synthesis of dihomooxacalix[4]arene phthalimides: NMR, X-ray and photophysical analysis

    Get PDF
    Direct O-alkylation of p-tert-butyldihomooxacalix[4]arene (1) with N-(bromopropyl)-or N-(bromoethyl)phthalimides and K2 CO3 in acetonitrile was conducted under conventional heating (reflux) and using microwave irradiation and ball milling methodologies. The reactions afforded mono-and mainly distal di-substituted derivatives in the cone conformation, in a total of eight compounds. They were isolated by column chromatography, and their conformations and the substitution patterns were established by NMR spectroscopy (1 H,13 C, COSY and NOESY experiments). The X-ray structures of four dihomooxacalix[4]arene phthalimide derivatives (2a, 3a, 3b and 5a) are reported, as well as their photophysical properties. The microwave (MW)-assisted alkylations drastically reduced the reaction times (from days to less than 45 min) and produced higher yields of both 1,3-di-substituted phthalimides (3a and 6a) with higher selectivity. Ball milling did not reveal to be a good method for this kind of reaction

    The contributions of molecular vibrations and higher triplet levels to the intersystem crossing mechanism in metal-free organic emitters.

    Get PDF
    Intense, simultaneous, room temperature phosphorescence (RTP) and thermally activated delayed fluorescence (TADF) is observed in a series of donor-acceptor-donor (D–A–D) molecules. This dual-luminescence is stronger in the “angular” isomers, compared to their “linear” regioisomers, which is consistent with an enhanced intersystem crossing (ISC) in the former. Herein, we demonstrate that the small energy gap between the triplet levels, T1-Tn, below the lowest singlet state, S1, in the “angular” regioisomers, enhances the coupling between S1 and T1 states and favors ISC and reverse ISC (rISC). This is consistent with a spin-vibronic mechanism. In the absence of this “triplet ladder”, due to the larger energy difference between T1 and Tn in the “linear” regioisomers, the ISC and rISC are not efficient. Remarkably the enhancement on the ISC rate in the “angular” regioisomers is accompanied by an increase on the rate of internal conversion (IC). These results highlight the contributions of higher triplet excited states and molecular vibronic coupling to harvest triplet states in organic compounds, and casts the TADF and RTP mechanisms into a common conceptual framework

    Estimation of the light field inside photosynthetic microorganism cultures through Mittag-Leffler functions at depleted light conditions

    Full text link
    [EN] Light attenuation within suspensions of photosynthetic microorganisms has been widely described by the Lambert-Beer equation. However, at depths where most of the light has been absorbed by the cells, light decay deviates from the exponential behaviour and shows a lower attenuation than the corresponding from the purely exponential fall. This discrepancy can be modelled through the Mittag-Leffler function, extending Lambert-Beer law via a tuning parameter ¿ that takes into account the attenuation process. In this work, we describe a fractional Lambert-Beer law to estimate light attenuation within cultures of model organism Synechocystis sp. PCC 6803. Indeed, we benchmark the measured light field inside cultures of two different Synechocystis strains, namely the wild-type and the antenna mutant strain called Olive at five different cell densities, with our in silico results. The Mittag-Leffler hyper-parameter ¿ that best fits the data is 0.995, close to the exponential case. One of the most striking results to emerge from this work is that unlike prior literature on the subject, this one provides experimental evidence on the validity of fractional calculus for determining the light field. We show that by applying the fractional Lambert-Beer law for describing light attenuation, we are able to properly model light decay in photosynthetic microorganisms suspensions.This project has received funding from the European Unions Seventh Programme for Research, technological development and demonstration under grant agreement No 308518 CyanoFactory. David Fuente is supported by grant Contratos Predoctorales FPI 2013 of the Universitat Politecnica de Valencia. Carlos Lizama is supported by Programa de Apoyo a la Investigation y Desarrollo (PAID-02-15) de la Universitat Politecnica de Valencia and CONICYT - PIA - Anillo ACT1416Fuente, D.; Lizama, C.; Urchueguía Schölzel, JF.; Conejero, JA. (2018). Estimation of the light field inside photosynthetic microorganism cultures through Mittag-Leffler functions at depleted light conditions. Journal of Quantitative Spectroscopy and Radiative Transfer. 204:23-26. https://doi.org/10.1016/j.jqsrt.2017.08.012S232620
    • …
    corecore