43 research outputs found

    Sumbangan Makan Jajanan Dalam Pemenuhan Kecukupan Energi Dan Protein Wanita Menyusui

    Full text link
    SUMBANGAN MAKAN JAJANAN DALAM PEMENUHAN KECUKUPAN ENERGI DAN PROTEIN WANITA MENYUSU

    Erratum: Search for photons with energies above 10\u3csup\u3e18\u3c/sup\u3e eV using the hybrid detector of the Pierre Auger Observatory (Journal of Cosmology and Astroparticle Physics (2017) 4 (9) DOI: 10.1088/1475-7516/2017/04/009)

    Get PDF
    1 Exposure calculation Due to a mistake in the numerical integration following eq. (6.2) of the original article [1], the exposure shown in figure 5 of the original article was incorrect. The correct exposure is shown in figure 1. 2 Upper limits on the integral photon flux and fraction The incorrect exposure affects the calculation of the upper limits on the integral photon flux following eq. (6.1) of the original article. The correct values for the upper limits are 0.038, 0.010, 0.009, 0.008 and 0.007 km−2 sr−1 yr−1 for threshold energies of 1, 2, 3, 5 and 10 EeV. The correct values for the upper limits on the integral photon fraction subsequently derived are 0.14 %, 0.17 %, 0.42 %, 0.86 % and 2.9 % for the same threshold energies. 3 Author list The author list of this erratum also corrects a mistake made in the original article, where F. Zuccarello was missing and Z. Zong was listed twice

    Revisiting the implications of Liouville's theorem to the anisotropy of cosmic rays

    Full text link
    We present a solution to Liouville's equation for an ensemble of charged particles propagating in magnetic fields. The solution is presented using an expansion in spherical harmonics of the phase space density, allowing a direct interpretation of the distribution of arrival directions of cosmic rays. The results are found for chosen conditions of variability and source distributions. We show there are two conditions for an initially isotropic flux of particles to remain isotropic while traveling through a magnetic field: isotropy and homogeneity of the sources. The formalism is used to analyze the data measured by the Pierre Auger Observatory, contributing to the understanding of the dependence of the dipole amplitude with energy and predicting the energy in which the quadrupole signal should be measured

    An Indication of Anisotropy in Arrival Directions of Ultra-high-energy Cosmic Rays through Comparison to the Flux Pattern of Extragalactic Gamma-Ray Sources

    Get PDF
    A new analysis of the data set from the Pierre Auger Observatory provides evidence for anisotropy in the arrival directions of ultra-high-energy cosmic rays on an intermediate angular scale, which is indicative of excess arrivals from strong, nearby sources. The data consist of 5514 events above 20 EeV with zenith angles up to 80 recorded before 2017 April 30. Sky models have been created for two distinct populations of extragalactic gamma-ray emitters: active galactic nuclei from the second catalog of hard Fermi-LAT sources (2FHL) and starburst galaxies from a sample that was examined with Fermi-LAT. Flux-limited samples, which include all types of galaxies from the Swift-BAT and 2MASS surveys, have been investigated for comparison. The sky model of cosmic-ray density constructed using each catalog has two free parameters, the fraction of events correlating with astrophysical objects, and an angular scale characterizing the clustering of cosmic rays around extragalactic sources. A maximum-likelihood ratio test is used to evaluate the best values of these parameters and to quantify the strength of each model by contrast with isotropy. It is found that the starburst model fits the data better than the hypothesis of isotropy with a statistical significance of 4.0σ, the highest value of the test statistic being for energies above 39 EeV. The three alternative models are favored against isotropy with 2.7σ-3.2σ significance. The origin of the indicated deviation from isotropy is examined and prospects for more sensitive future studies are discussed

    Measurement of the average shape of longitudinal profiles of cosmic-ray air showers at the Pierre Auger Observatory

    Get PDF
    The profile of the longitudinal development of showers produced by ultra-high energy cosmic rays carries information related to the interaction properties of the primary particles with atmospheric nuclei. In this work, we present the first measurement of the average shower profile in traversed atmospheric depth at the Pierre Auger Observatory. The shapes of profiles are well reproduced by the Gaisser-Hillas parametrization within the range studied, for E\u3e10 17.8 eV . A detailed analysis of the systematic uncertainties is performed using ten years of data and a full detector simulation. The average shape is quantified using two variables related to the width and asymmetry of the profile, and the results are compared with predictions of hadronic interaction models for different primary particles
    corecore