5 research outputs found

    Relative quantification in seed GMO analysis: state of art and bottlenecks

    No full text
    International audienceReliable quantitative methods are needed to comply with current EU regulations on the mandatory labeling of genetically modified organisms (GMOs) and GMO-derived food and feed products with a minimum GMO content of 0.9 %. The implementation of EU Commission Recommendation 2004/787/EC on technical guidance for sampling and detection which meant as a helpful tool for the practical implementation of EC Regulation 1830/2003, which states that "the results of quantitative analysis should be expressed as the number of target DNA sequences per target taxon specific sequences calculated in terms of haploid genomes". This has led to an intense debate on the type of calibrator best suitable for GMO quantification. The main question addressed in this review is whether reference materials and calibrators should be matrix based or whether pure DNA analytes should be used for relative quantification in GMO analysis. The state of the art, including the advantages and drawbacks, of using DNA plasmid (compared to genomic DNA reference materials) as calibrators, is widely described. In addition, the influence of the genetic structure of seeds on real-time PCR quantitative results obtained for seed lots is discussed. The specific composition of a seed kernel, the mode of inheritance, and the ploidy level ensure that there is discordance between a GMO % expressed as a haploid genome equivalent and a GMO % based on numbers of seeds. This means that a threshold fixed as a percentage of seeds cannot be used as such for RT-PCR. All critical points that affect the expression of the GMO content in seeds are discussed in this paper

    Vaccination of melanoma patients using dendritic cells loaded with an allogeneic tumor cell lysate.

    No full text
    The aim of the present phase I/II study was to evaluate the safety, immune responses and clinical activity of a vaccine based on autologous dendritic cells (DC) loaded with an allogeneic tumor cell lysate in advanced melanoma patients. DC derived from monocytes were generated in serum-free medium containing GM-CSF and IL-13 according to Good Manufacturing Practices. Fifteen patients with metastatic melanoma (stage III or IV) received four subcutaneous, intradermal, and intranodal vaccinations of both DC loaded with tumor cell lysate and DC loaded with hepatitis B surface protein (HBs) and/or tetanus toxoid (TT). No grade 3 or 4 adverse events related to the vaccination were observed. Enhanced immunity to the allogeneic tumor cell lysate and to TAA-derived peptides were documented, as well as immune responses to HBs/TT antigens. Four out of nine patients who received the full treatment survived for more than 20 months. Two patients showed signs of clinical response and received 3 additional doses of vaccine: one patient showed regression of in-transit metastases leading to complete remission. Eighteen months later, the patient was still free of disease. The second patient experienced stabilization of lung metastases for approximately 10 months. Overall, our results show that vaccination with DC loaded with an allogeneic melanoma cell lysate was feasible in large-scale and well-tolerated in this group of advanced melanoma patients. Immune responses to tumor-related antigens documented in some treated patients support further investigations to optimize the vaccine formulation.Clinical Trial, Phase IClinical Trial, Phase IIJournal ArticleResearch Support, Non-U.S. Gov'tinfo:eu-repo/semantics/publishe

    Rare predicted loss-of-function variants of type I IFN immunity genes are associated with life-threatening COVID-19

    No full text
    BackgroundWe previously reported that impaired type I IFN activity, due to inborn errors of TLR3- and TLR7-dependent type I interferon (IFN) immunity or to autoantibodies against type I IFN, account for 15-20% of cases of life-threatening COVID-19 in unvaccinated patients. Therefore, the determinants of life-threatening COVID-19 remain to be identified in similar to 80% of cases.MethodsWe report here a genome-wide rare variant burden association analysis in 3269 unvaccinated patients with life-threatening COVID-19, and 1373 unvaccinated SARS-CoV-2-infected individuals without pneumonia. Among the 928 patients tested for autoantibodies against type I IFN, a quarter (234) were positive and were excluded.ResultsNo gene reached genome-wide significance. Under a recessive model, the most significant gene with at-risk variants was TLR7, with an OR of 27.68 (95%CI 1.5-528.7, P=1.1x10(-4)) for biochemically loss-of-function (bLOF) variants. We replicated the enrichment in rare predicted LOF (pLOF) variants at 13 influenza susceptibility loci involved in TLR3-dependent type I IFN immunity (OR=3.70[95%CI 1.3-8.2], P=2.1x10(-4)). This enrichment was further strengthened by (1) adding the recently reported TYK2 and TLR7 COVID-19 loci, particularly under a recessive model (OR=19.65[95%CI 2.1-2635.4], P=3.4x10(-3)), and (2) considering as pLOF branchpoint variants with potentially strong impacts on splicing among the 15 loci (OR=4.40[9%CI 2.3-8.4], P=7.7x10(-8)). Finally, the patients with pLOF/bLOF variants at these 15 loci were significantly younger (mean age [SD]=43.3 [20.3] years) than the other patients (56.0 [17.3] years; P=1.68x10(-5)).ConclusionsRare variants of TLR3- and TLR7-dependent type I IFN immunity genes can underlie life-threatening COVID-19, particularly with recessive inheritance, in patients under 60 years old

    Correction: Rare predicted loss-of-function variants of type I IFN immunity genes are associated with life-threatening COVID-19

    No full text
    International audienc
    corecore