2,338 research outputs found

    Dirty Weyl semimetals: Stability, phase transition and quantum criticality

    Full text link
    We study the stability of three-dimensional incompressible Weyl semimetals in the presence of random quenched charge impurities. Combining numerical analysis and scaling theory we show that in the presence of sufficiently weak randomness (i) Weyl semimetal remains stable, while (ii) double-Weyl semimetal gives rise to compressible diffusive metal where the mean density of states at zero energy is finite. At stronger disorder, Weyl semimetal undergoes a quantum phase transition and enter into a metallic phase. Mean density of states at zero energy serves as the order parameter and displays single-parameter scaling across such disorder driven quantum phase transition. We numerically determine various exponents at the critical point, which appear to be insensitive to the number of Weyl pairs. We also extract the extent of the quantum critical regime in disordered Weyl semimetal and the phase diagram of dirty double Weyl semimetal at finite energies.Comment: 5 pages and 5 figures (Supplementary: 6 pages and 5 figure): Published version, added discussion, new results and reference

    Enhanced Raman and photoluminescence response in monolayer MoS2_2 due to laser healing of defects

    Full text link
    Bound quasiparticles, negatively charged trions and neutral excitons, are associated with the direct optical transitions at the K-points of the Brillouin zone for monolayer MoS2_2. The change in the carrier concentration, surrounding dielectric constant and defect concentration can modulate the photoluminescence and Raman spectra. Here we show that exposing the monolayer MoS2_2 in air to a modest laser intensity for a brief period of time enhances simultaneously the photoluminescence (PL) intensity associated with both trions and excitons, together with \sim 3 to 5 times increase of the Raman intensity of first and second order modes. The simultaneous increase of PL from trions and excitons cannot be understood based only on known-scenario of depletion of electron concentration in MoS2_2 by adsorption of O2_2 and H2_2O molecules. This is explained by laser induced healing of defect states resulting in reduction of non-radiative Auger processes. This laser healing is corroborated by an observed increase of intensity of both the first order and second order 2LA(M) Raman modes by a factor of \sim 3 to 5. The A1g_{1g} mode hardens by \sim 1.4 cm1^{-1} whereas the E2g1^1_{2g} mode softens by \sim 1 cm1^{-1}. The second order 2LA(M) Raman mode at \sim 440 cm1^{-1} shows an increase in wavenumber by \sim 8 cm1^{-1} with laser exposure. These changes are a combined effect of change in electron concentrations and oxygen-induced lattice displacements.Comment: 15 pages, 5 figures, Journal of Raman Spectroscopy, 201

    Magnetic correlations of the quasi-one-dimensional half-integer spin-chain antiferromagnets SrM2M_2V2_2O8_8 (MM = Co, Mn)

    Full text link
    Magnetic correlations of two iso-structural quasi-one-dimensional (1D) antiferromagnetic spin-chain compounds SrM2M_2V2_2O8_8 (MM = Co, Mn) have been investigated by magnetization and powder neutron diffraction. Two different collinear antiferromagnetic (AFM) structures, characterized by the propagation vectors, kk = (0 0 1) and kk = (0 0 0), have been found below \sim 5.2 K and \sim 42.2 K for the Co- and Mn-compounds, respectively. For the Mn-compound, AFM chains (along the cc axis) order ferromagnetically within the abab plane, whereas, for the Co-compound, AFM chains order ferro-/antiferromagnetically along the a/ba/b direction. The critical exponent study confirms that the Co- and Mn-compounds belong to the Ising and Heisenberg universality classes, respectively. For both compounds, short-range spin-spin correlations are present over a wide temperature range above TNT_N. The reduced ordered moments at base temperature (1.5 K) indicate the presence of quantum fluctuations in both compounds due to the quasi-1D magnetic interactions.Comment: 14 pages, 10 figures, 9 table

    Diffusion and criticality in undoped graphene with resonant scatterers

    Full text link
    A general theory is developed to describe graphene with arbitrary number of isolated impurities. The theory provides a basis for an efficient numerical analysis of the charge transport and is applied to calculate the minimal conductivity of graphene with resonant scatterers. In the case of smooth resonant impurities conductivity grows logarithmically with increasing impurity concentration, in agreement with renormalization group analysis for the symmetry class DIII. For vacancies (or strong on-site potential impurities) the conductivity saturates at a constant value that depends on the vacancy distribution among two sublattices as expected for the symmetry class BDI.Comment: 4 pages, 2 figure

    Case Report: Maternal deaths following nevirapinebased antiretroviral therapy

    Get PDF
    We report 2 cases illustrating that it is too simplistic to link nevirapine (NVP) toxicity exclusively to individuals with immune preservation. Not enough is known about the mechanism of hepatotoxicity or cutaneous eruption to predict these events. This type of hypersensitivity reaction occurs rarely among HIV-exposed infants taking NVP prophylaxis or antiretroviral therapy(ART)-experienced adults with complete plasma viral load suppression. Conversely, HIV-uninfected adults and ART-naive pregnant women appear to be disproportionately affected by the adverse effects of NVP

    Maternal deaths following nevirapine-based antiretroviral therapy

    Get PDF
    We report 2 cases illustrating that it is too simplistic to link nevirapine (NVP) toxicity exclusively to individuals with immune preservation. Not enough is known about the mechanism of hepatotoxicity or cutaneous eruption to predict these events. This type of hypersensitivity reaction occurs rarely among HIV-exposed infants taking NVP prophylaxis or antiretroviral therapy (ART)-experienced adults with complete plasma viral load suppression. Conversely, HIV-uninfected adults and ART-naive pregnant women appear to be disproportionately affected by the adverse effects of NVP

    Chromium (VI) Biosorption by Immobilized Biomass of Bacillus ceres M116

    Get PDF
    Biosorption is potentially an attractive technology for treatment of wastewater for retaining heavy metals from dilute solutions. This study investigated the feasibility of Bacillus cereus M116 immobilized in different carriers as a biosorbent for chromium removal from aqueous solutions in batch mode; optimum conditions were determined. Experimental results showed the bacterial strain immobilized in calcium alginate gel matrix was most effective in removing Cr(VI) ion from solution. The uptake of metal was very fast initially, and equilibrium was attained within 80 mins. The overall biosorption process was best described by the pseudo second-order kinetics. Intraparticle diffusion was not the only rate-determining step. The sorption data conformed well to the Fruendlich isotherm model. The highest value of Cr(VI) uptake by Bacillus cereus M116 (6.0g/L ,dry basis) immobilized in 3% calcium alginate was 92.5% at 25°C, when initial chromium concentration was 50 mg /L

    Evaluation of Economic Losses due to Coccidiosis in Poultry Industry in India

    Get PDF
    Coccidiosis is an old parasitic disease, prevalent all over the country and has a significant impact on poultry production. In this paper, economic loss to poultry industry has been estimated considering the major economic parameters. The estimation has revealed that commercial broiler industry is a major sufferer due to coccidiosis wherein 95.61 per cent of the total economic loss occurs due to the disease. The commercial layer industry shares 3.53 per cent economic loss, mainly due to cost of chemoprophylaxis and reduced egg production. A comparison across economic traits has revealed that loss is maximum due to reduced body weight gain, followed by increased FCR (23.74%) and chemoprophylaxis (2.83%) in the total loss due to coccidiosis in broiler industry of India. The overall comparison of economic traits for all the types of poultry sector it has shown that reduced body wt gain and increased FCR are the major parameters from which 68.08 per cent and 22.70 per cent annual loss has occurred in the total loss from coccidiosis in India during the year 2003-04. The total loss due to coccidiosis has been found to be of Rs 1.14 billion (approx) for the year 2003-04. The study has observed that generation of this data across different geographical regions will be helpful to conclude about the global economic loss due to coccidiosis in the poultry industry.Agricultural and Food Policy,

    Symmetry-dependent phonon renormalization in monolayer MoS2 transistor

    Full text link
    Strong electron-phonon interaction which limits electronic mobility of semiconductors can also have significant effects on phonon frequencies. The latter is the key to the use of Raman spectroscopy for nondestructive characterization of doping in graphene-based devices. Using in-situ Raman scattering from single layer MoS2_2 electrochemically top-gated field effect transistor (FET), we show softening and broadening of A1g_{1g} phonon with electron doping whereas the other Raman active E2g1_{2g}^{1} mode remains essentially inert. Confirming these results with first-principles density functional theory based calculations, we use group theoretical arguments to explain why A1g_{1g} mode specifically exhibits a strong sensitivity to electron doping. Our work opens up the use of Raman spectroscopy in probing the level of doping in single layer MoS2_2-based FETs, which have a high on-off ratio and are of enormous technological significance.Comment: 5 pages, 3 figure
    corecore