1,001 research outputs found

    Survival probability in Generalized Rosenzweig-Porter random matrix ensemble

    Full text link
    We study analytically and numerically the dynamics of the generalized Rosenzweig-Porter model, which is known to possess three distinct phases: ergodic, multifractal and localized phases. Our focus is on the survival probability R(t)R(t), the probability of finding the initial state after time tt. In particular, if the system is initially prepared in a highly-excited non-stationary state (wave packet) confined in space and containing a fixed fraction of all eigenstates, we show that R(t)R(t) can be used as a dynamical indicator to distinguish these three phases. Three main aspects are identified in different phases. The ergodic phase is characterized by the standard power-law decay of R(t)R(t) with periodic oscillations in time, surviving in the thermodynamic limit, with frequency equals to the energy bandwidth of the wave packet. In multifractal extended phase the survival probability shows an exponential decay but the decay rate vanishes in the thermodynamic limit in a non-trivial manner determined by the fractal dimension of wave functions. Localized phase is characterized by the saturation value of R(t)=kR(t\to\infty)=k, finite in the thermodynamic limit NN\rightarrow\infty, which approaches k=R(t0)k=R(t\to 0) in this limit.Comment: 21 pages, 12 figures, 61 reference

    Diffusion and criticality in undoped graphene with resonant scatterers

    Full text link
    A general theory is developed to describe graphene with arbitrary number of isolated impurities. The theory provides a basis for an efficient numerical analysis of the charge transport and is applied to calculate the minimal conductivity of graphene with resonant scatterers. In the case of smooth resonant impurities conductivity grows logarithmically with increasing impurity concentration, in agreement with renormalization group analysis for the symmetry class DIII. For vacancies (or strong on-site potential impurities) the conductivity saturates at a constant value that depends on the vacancy distribution among two sublattices as expected for the symmetry class BDI.Comment: 4 pages, 2 figure

    A Group Increment Scheme for Infrared Absorption Intensities of Greenhouse Gases

    Get PDF
    A molecule's absorption in the atmospheric infrared (IR) window (IRW) is an indicator of its efficiency as a greenhouse gas. A model for estimating the absorption of a fluorinated molecule within the IRW was developed to assess its radiative impact. This model will be useful in comparing different hydrofluorocarbons and hydrofluoroethers contribution to global warming. The absorption of radiation by greenhouse gases, in particular hydrofluoroethers and hydrofluorocarbons, was investigated using ab initio quantum mechanical methods. Least squares regression techniques were used to create a model based on this data. The placement and number of fluorines in the molecule were found to affect the absorption in the IR window and were incorporated into the model. Several group increment models are discussed. An additive model based on one-carbon groups is found to work satisfactorily in predicting the ab initio calculated vibrational intensities

    Perturbative and non-perturbative studies with the delta function potential

    Full text link
    We show that the delta function potential can be exploited along with perturbation theory to yield the result of certain infinite series. The idea is that any exactly soluble potential if coupled with a delta function potential remains exactly soluble. We use the strength of the delta function as an expansion parameter and express the second-order energy shift as an infinite sum in perturbation theory. The analytical solution is used to determine the second-order energy shift and hence the sum of an infinite series. By an appropriate choice of the unperturbed system, we can show the importance of the continuum in the energy shift of bound states.Comment: 19 pages, 2 table

    Temperature-time dependent transmittance, sheet resistance and bonding energy of reduced graphene oxide on soda lime glass.

    Get PDF
    Reduced graphene oxide coated soda lime glass can act as an alternative transparent/conducting electrode for many opto-electronic applications. However, bonding between the deposited reduced graphene oxide film and the glass substrate is important for achieving better stability of the coating and an extended device lifetime. In the present study, delamination energy of reduced graphene oxide on soda lime glass was quantified by using nanoscratch technique. Graphene oxide was deposited on soda lime glass by dip coating technique and was thermally reduced at different temperatures (100 °C, 200 °C, 300 °C, 400 °C and 500 °C) and treatment time (2 h, 3 h, 4 h, 5 h and 10 h) in Ar (95%) with H2 (5%) atmosphere. An inverse behavior of delamination energy with temperature and treatment time was observed, which could be correlated with the removal of oxygen functional groups. Sheet resistance of the film demonstrated a steady decay with increasing temperature and treatment time. Functional groups attached to the graphene planes have more influence on conductivity than groups attached to the edges. Removal of functional groups could also be related to optical transmittance of the samples. Knowledge generated in this study with respect to delamination energy, sheet resistance and optical transmittance could be extensively used for various opto-electronic applications

    GRAMMATICAL ERRORS IN WRITING UNDERGRADUATE THESIS PROPOSAL: A STUDY CASE ON THE LAST SEMESTER STUDENTS OF ENGLISH STUDY PROGRAM OF NUSA CENDANA UNIVERSITY IN THE ACADEMIC YEAR 2020-2021

    Get PDF
    Research with topics like this is not new, educators usually try to find out the weaknesses of their students in terms of mastery of grammar to solve the teaching and learning problems. English study Program of FKIP, Universitas Nusa Cendana also see this as something urgent so it is very necessary to do to see and identify the weaknesses of students English Education study program in writing scientific papers (thesis) from the grammatical point of view by using the surface strategy taxonomy approach introduced by Dulay, Burt, and Krashen (1982). This research is expected to contribute to the teaching and learning process in the study program, especially for several related subjects such as Writing I, II, III, and Academic Writing. By identifying students’ problems in writing thesis proposals, educators, especially lecturers of the English Education Study Program are expected to be able to map the problems of English study program students and make them a reference for teaching

    Ion adsorption-induced wetting transition in oil-water-mineral systems

    Get PDF
    The relative wettability of oil and water on solid surfaces is generally governed by a complex competition of molecular interaction forces acting in such three-phase systems. Herein, we experimentally demonstrate how the adsorption of in nature abundant divalent Ca2+ cations to solid-liquid interfaces induces a macroscopic wetting transition from finite contact angles (≈10°) with to near-zero contact angles without divalent cations. We developed a quantitative model based on DLVO theory to demonstrate that this transition, which is observed on model clay surfaces, mica, but not on silica surfaces nor for monovalent K+ and Na+ cations is driven by charge reversal of the solid-liquid interface. Small amounts of a polar hydrocarbon, stearic acid, added to the ambient decane synergistically enhance the effect and lead to water contact angles up to 70° in the presence of Ca2+. Our results imply that it is the removal of divalent cations that makes reservoir rocks more hydrophilic, suggesting a generalizable strategy to control wettability and an explanation for the success of so-called low salinity water flooding, a recent enhanced oil recovery technology

    Two- and three-dimensional magnetic correlations in the spin-1/2 square-lattice system Zn2VO(PO4)2

    Full text link
    The magnetic correlations in the quasi-two dimensional spin-1/2 square-lattice system Zn2VO(PO4)2 have been investigated by neutron diffraction technique. A long-range antiferromagnetic (AFM) ordering below 3.75 K (TN) has been observed with a reduced moment of 0.66(2) {\mu}B per V ion at 1.5 K. In a given ab plane, the AFM spin arrangement is N\'eel type and the AFM layers are coupled ferromagnetically along the c axis. Remarkably, we have observed a pure 2D short-range AFM ordering in the ab plane above TN. Interestingly, the coexistence of diffuse magnetic scattering and three dimensional antiferromagnetic Bragg peaks has been found below TN, indicating the presence of spin-waves as confirmed by our calculation using the linear spin-wave theory. The observed results are discussed in the light of existing theory for a two-dimensional spin-1/2 square-lattice system.Comment: 19 PAGES, 8 FIGURES, Accepted for publication in Physical Review B 201
    corecore