143 research outputs found

    FDG-PET/CT Imaging Predicts Histopathologic Treatment Responses after Neoadjuvant Therapy in Adult Primary Bone Sarcomas

    Get PDF
    Purpose. The aim of this study was to prospectively evaluate whether FDG-PET allows an accurate assessment of histopathologic response to neoadjuvant treatment in adult patients with primary bone sarcomas. Methods. Twelve consecutive patients with resectable, primary high grade bone sarcomas were enrolled prospectively. FDG-PET/CT imaging was performed prior to the initiation and after completion of neoadjuvant treatment. Imaging findings were correlated with histopathologic response. Results. Histopathologic responders showed significantly more pronounced decreases in tumor FDG-SUVmax from baseline to late follow up than non-responders (64 ± 19% versus 29 ± 30 %, resp.; P = .03). Using a 60% decrease in tumor FDG-uptake as a threshold for metabolic response correctly classified 3 of 4 histopathologic responders and 7 of 8 histopathologic non-responders as metabolic responders and non-responders, respectively (sensitivity, 75%; specificity, 88%). Conclusion. These results suggest that changes in FDG-SUVmax at the end of neoadjuvant treatment can identify histopathologic responders and non-responders in adult primary bone sarcoma patients

    Human biodistribution and radiation dosimetry of novel PET probes targeting the deoxyribonucleoside salvage pathway

    Get PDF
    PurposeDeoxycytidine kinase (dCK) is a rate-limiting enzyme in deoxyribonucleoside salvage, a metabolic pathway involved in the production and maintenance of a balanced pool of deoxyribonucleoside triphosphates (dNTPs) for DNA synthesis. dCK phosphorylates and therefore activates nucleoside analogs such as cytarabine, gemcitabine, decitabine, cladribine, and clofarabine that are used routinely in cancer therapy. Imaging probes that target dCK might allow stratifying patients into likely responders and nonresponders with dCK-dependent prodrugs. Here we present the biodistribution and radiation dosimetry of three fluorinated dCK substrates, (18)F-FAC, L: -(18)F-FAC, and L: -(18)F-FMAC, developed for positron emission tomography (PET) imaging of dCK activity in vivo.MethodsPET studies were performed in nine healthy human volunteers, three for each probe. After a transmission scan, the radiopharmaceutical was injected intravenously and three sequential emission scans acquired from the base of the skull to mid-thigh. Regions of interest encompassing visible organs were drawn on the first PET scan and copied to the subsequent scans. Activity in target organs was determined and absorbed dose estimated with OLINDA/EXM. The standardized uptake value was calculated for various organs at different times.ResultsRenal excretion was common to all three probes. Bone marrow had higher uptake for L: -(18)F-FAC and L: -(18)F-FMAC than (18)F-FAC. Prominent liver uptake was seen in L: -(18)F-FMAC and L: -(18)F-FAC, whereas splenic activity was highest for (18)F-FAC. Muscle uptake was also highest for (18)F-FAC. The critical organ was the bladder wall for all three probes. The effective dose was 0.00524, 0.00755, and 0.00910 mSv/MBq for (18)F-FAC, L: -(18)F-FAC, and L: -(18)F-FMAC, respectively.ConclusionThe biodistribution of (18)F-FAC, L: -(18)F-FAC, and L: -(18)F-FMAC in humans reveals similarities and differences. Differences may be explained by different probe affinities for nucleoside transporters, dCK, and catabolic enzymes such as cytidine deaminase (CDA). Dosimetry demonstrates that all three probes can be used safely to image the deoxyribonucleoside salvage pathway in humans

    Wages in high-tech start-ups - do academic spin-offs pay a wage premium?

    Full text link
    Due to their origin from universities, academic spin‐offs operate at the forefront of the technological development. Therefore, spin‐offs exhibit a skill‐biased labour demand, i.e. spin‐offs have a high demand for employees with cutting edge knowledge and technical skills. In order to accommodate this demand, spin‐offs may have to pay a relative wage premium compared to other high‐tech start‐ups. However, neither a comprehensive theoretical assessment nor the empirical literature on wages in start‐ups unambiguously predicts the existence and the direction of wage differentials between spin‐offs and non‐spin‐offs. This paper addresses this research gap and examines empirically whether or not spin‐offs pay their employees a wage premium. Using a unique linked employer‐employee data set of German high‐tech start‐ups, we estimate Mincer‐type wage regressions applying the Hausman‐Taylor panel estimator. Our results show that spin‐offs do not pay a wage premium in general. However, a notable exception from this general result is that spin‐offs that commercialise new scientific results or methods provide higher wages to employees with linkages to the university sector – either as university graduates or as student workers

    Comprehensive Pan-Genomic Characterization of Adrenocortical Carcinoma

    Get PDF
    SummaryWe describe a comprehensive genomic characterization of adrenocortical carcinoma (ACC). Using this dataset, we expand the catalogue of known ACC driver genes to include PRKAR1A, RPL22, TERF2, CCNE1, and NF1. Genome wide DNA copy-number analysis revealed frequent occurrence of massive DNA loss followed by whole-genome doubling (WGD), which was associated with aggressive clinical course, suggesting WGD is a hallmark of disease progression. Corroborating this hypothesis were increased TERT expression, decreased telomere length, and activation of cell-cycle programs. Integrated subtype analysis identified three ACC subtypes with distinct clinical outcome and molecular alterations which could be captured by a 68-CpG probe DNA-methylation signature, proposing a strategy for clinical stratification of patients based on molecular markers

    Extrinsic Rewards and Intrinsic Motives: Standard and Behavioral Approaches to Agency and Labor Markets

    Full text link
    corecore