161 research outputs found

    Determination of the relative resistance to ignition of selected turbopump materials in high-pressure, high-temperature, oxygen environments, volume 1

    Get PDF
    Advances in the design of the liquid oxygen, liquid hydrogen engines for the Space Transportation System call for the use of warm, high-pressure oxygen as the driving gas in the liquid oxygen turbopump. The NASA Lewis Research Center requested the NASA White Sands Test Facility (WSTF) to design a test program to determine the relative resistance to ignition of nine selected turbopump materials: Hastelloy X, Inconel 600, Invar 36, Monel K-500, nickel 200, silicon carbide, stainless steel 316, and zirconium copper. The materials were subjected to particle impact and to frictional heating in high-pressure oxygen

    Ignition and combustion of metals in oxygen

    Get PDF
    Tests in which metals were rubbed against themselves in oxygen have revealed that increasing oxygen pressure does not always increase the potential for ignition. It is believed that there exists a specific pressure above which convective heat loss due to higher oxygen density will overcome the potential increase in the oxidation rate afforded by the increase in oxygen pressure. Test results have shown that, once a specific oxygen pressure is exceeded, greater rates of frictional energy were required for ignition of metals as pressure is increased. Other test results have indicated that as oxygen pressure is increased during the rubbing process, the bulk sample equilibrium temperatures decrease. These results support the belief that increases in convective heat loss as pressure is increased can raise the energy requirements for ignition of metals or lower their ignition potentials. Testing has also indicated that, when metals were exposed to a rubbing process and oxygen pressure was increased, metals such as carbon steel exhibited a decrease in their bulk ignition temperatures, whereas metals such as Monel showed bulk ignition temperatures independent of pressure

    Determination of the relative resistance to ignition of selected turbopump materials in high-pressure, high-temperature, oxygen environments, volume 3

    Get PDF
    Data is presented from frictional heating tests on pairs of different materials. Materials tested include: Hastelloy X, Inconel 600, Invar 36, Monel K-500, Monel 400, nickel 200, silicon carbide, stainless steels 316, and zirconium copper. In tests where pairs of different materials were rubbed together, the material rated less resistant to ignition in previous tests appeared to control the resistance to ignition of the pair

    Determination of the relative resistance to ignition of selected turbopump materials in high-pressure, high-temperature, oxygen environments, volume 2

    Get PDF
    Data from the particle impact tests are presented. Results are provided for the frictional heating tests of pairs of like materials. The materials tested include: Hastelloy X, Inconel 600, Invar 36, Monel K-500, Monel 400, nickel 200, silicon carbide, stainless steel 316, and zironium copper

    Full capacitance-matrix effects in driven Josephson-junction arrays

    Full text link
    We study the dynamic response to external currents of periodic arrays of Josephson junctions, in a resistively capacitively shunted junction (RCSJ) model, including full capacitance-matrix effects}. We define and study three different models of the capacitance matrix Cr,rC_{\vec{r},\vec{r}'}: Model A includes only mutual capacitances; Model B includes mutual and self capacitances, leading to exponential screening of the electrostatic fields; Model C includes a dense matrix Cr,rC_{\vec{r},\vec{r}'} that is constructed approximately from superposition of an exact analytic solution for the capacitance between two disks of finite radius and thickness. In the latter case the electrostatic fields decay algebraically. For comparison, we have also evaluated the full capacitance matrix using the MIT fastcap algorithm, good for small lattices, as well as a corresponding continuum effective-medium analytic evaluation of a finite voltage disk inside a zero-potential plane. In all cases the effective Cr,rC_{\vec{r},\vec{r}'} decays algebraically with distance, with different powers. We have then calculated current voltage characteristics for DC+AC currents for all models. We find that there are novel giant capacitive fractional steps in the I-V's for Models B and C, strongly dependent on the amount of screening involved. We find that these fractional steps are quantized in units inversely proportional to the lattice sizes and depend on the properties of Cr,rC_{\vec{r},\vec{r}'}. We also show that the capacitive steps are not related to vortex oscillations but to localized screened phase-locking of a few rows in the lattice. The possible experimental relevance of these results is also discussed.Comment: 12 pages 18 Postscript figures, REVTEX style. Paper to appear in July 1, Vol. 58, Phys. Rev. B 1998 All PS figures include

    Characterising the Gravitational Instability in Cooling Accretion Discs

    Full text link
    We perform numerical analyses of the structure induced by gravitational instabilities in cooling gaseous accretion discs. For low enough cooling rates a quasi-steady configuration is reached, with the instability saturating at a finite amplitude in a marginally stable disc. We find that the saturation amplitude scales with the inverse square root of the cooling parameter beta = t_cool / t_dyn, which indicates that the heating rate induced by the instability is proportional to the energy density of the induced density waves. We find that at saturation the energy dissipated per dynamical time by weak shocks due is of the order of 20 per cent of the wave energy. From Fourier analysis of the disc structure we find that while the azimuthal wavenumber is roughly constant with radius, the mean radial wavenumber increases with radius, with the dominant mode corresponding to the locally most unstable wavelength. We demonstrate that the density waves excited in relatively low mass discs are always close to co-rotation, deviating from it by approximately 10 per cent. This can be understood in terms of the flow Doppler-shifted phase Mach number -- the pattern speed self-adjusts so that the flow into spiral arms is always sonic. This has profound effects on the degree to which transport through self-gravity can be modelled as a viscous process. Our results thus provide (a) a detailed description of how the self-regulation mechanism is established for low cooling rates, (b) a clarification of the conditions required for describing the transport induced by self-gravity through an effective viscosity, (c) an estimate of the maximum amplitude of the density perturbation before fragmentation occurs, and (d) a simple recipe to estimate the density perturbation in different thermal regimes.Comment: 16 pages, 22 figures. Accepted for publication in MNRAS 11 November 200

    Where Did The Moon Come From?

    Full text link
    The current standard theory of the origin of the Moon is that the Earth was hit by a giant impactor the size of Mars causing ejection of iron poor impactor mantle debris that coalesced to form the Moon. But where did this Mars-sized impactor come from? Isotopic evidence suggests that it came from 1AU radius in the solar nebula and computer simulations are consistent with it approaching Earth on a zero-energy parabolic trajectory. But how could such a large object form in the disk of planetesimals at 1AU without colliding with the Earth early-on before having a chance to grow large or before its or the Earth's iron core had formed? We propose that the giant impactor could have formed in a stable orbit among debris at the Earth's Lagrange point L4L_4 (or L5L_5). We show such a configuration is stable, even for a Mars-sized impactor. It could grow gradually by accretion at L4L_4 (or L5L_5), but eventually gravitational interactions with other growing planetesimals could kick it out into a chaotic creeping orbit which we show would likely cause it to hit the Earth on a zero-energy parabolic trajectory. This paper argues that this scenario is possible and should be further studied.Comment: 64 pages, 27 figures, accepted for publication in A

    The consumption of Internet child pornography and violent and sex offending

    Get PDF
    Background: There is an ongoing debate on whether consumers of child pornography pose a risk for hands-on sex offenses. Up until now, there have been very few studies which have analyzed the association between the consumption of child pornography and the subsequent perpetration of hands-on sex offenses. The aim of this study was to examine the recidivism rates for hands-on and hands-off sex offenses in a sample of child pornography users using a 6 year follow-up design.Methods: The current study population consisted of 231 men, who were subsequently charged with consumption of illegal pornographic material after being detected by a special operation against Internet child pornography, conducted by the Swiss police in 2002. Criminal history, as well as recidivism, was assessed using the criminal records from 2008.Results: 4.8% (n = 11) of the study sample had a prior conviction for a sexual and/or violent offense, 1% (n = 2) for a hands-on sex offense, involving child sexual abuse, 3.3% (n = 8) for a handsoff sex offense and one for a nonsexual violent offense. When applying a broad definition of recidivism, which included ongoing investigations, charges and convictions, 3% (n = 7) of the study sample recidivated with a violent and/or sex offense, 3.9% (n = 9) with a hands-off sex offense and 0.8% (n = 2) with a hands-on sex offense.Conclusion: Consuming child pornography alone is not a risk factor for committing hands-on sex offenses at least not for those subjects who had never committed a hands-on sex offense. The majority of the investigated consumers had no previous convictions for hands-on sex offenses. For those offenders, the prognosis for hands-on sex offenses, as well as for recidivism with child pornography, is favorable

    An RND-Type Efflux System in Borrelia burgdorferi Is Involved in Virulence and Resistance to Antimicrobial Compounds

    Get PDF
    Borrelia burgdorferi is remarkable for its ability to thrive in widely different environments due to its ability to infect various organisms. In comparison to enteric Gram-negative bacteria, these spirochetes have only a few transmembrane proteins some of which are thought to play a role in solute and nutrient uptake and excretion of toxic substances. Here, we have identified an outer membrane protein, BesC, which is part of a putative export system comprising the components BesA, BesB and BesC. We show that BesC, a TolC homolog, forms channels in planar lipid bilayers and is involved in antibiotic resistance. A besC knockout was unable to establish infection in mice, signifying the importance of this outer membrane channel in the mammalian host. The biophysical properties of BesC could be explained by a model based on the channel-tunnel structure. We have also generated a structural model of the efflux apparatus showing the putative spatial orientation of BesC with respect to the AcrAB homologs BesAB. We believe that our findings will be helpful in unraveling the pathogenic mechanisms of borreliae as well as in developing novel therapeutic agents aiming to block the function of this secretion apparatus
    corecore