7 research outputs found

    Optimization Method of Combined Multi-Mode Bus Scheduling under Unbalanced Conditions

    No full text
    In view of the spatial and temporal imbalance of residents’ travel demands and challenges of optimal bus capacity allocation, in this paper the grand station express bus scheduling mode is introduced in the direction of heavy passenger flow during peak hours. Coordinated scheduling combining whole-journey and grand station express buses is adopted, and the station correlation calculation model is used to determine the optimal stops of the grand station express bus. Thus, a two-way bus scheduling optimization model for peak passenger flow is established with the goal of minimizing the total cost of passenger travel and enterprise operation. Finally, the nonlinear inertia weight dynamic cuckoo search algorithm is selected for the model’s solution, and the established scheduling optimization model is solved by combining basic data such as the study line’s bus Integrated Circuit (IC) card data. The effectiveness of the model is verified through a comparative study and evaluation of the solution

    Comparative Investigation of Raw and Processed Radix Polygoni Multiflori on the Treatment of Vascular Dementia by Liquid Chromatograph−Mass Spectrometry Based Metabolomic Approach

    No full text
    Radix Polygoni Multiflori (PM) is a well−known nootropic used in traditional Chinese medicine (TCM). Considering the efficacy and application discrepancy between raw (RPM) and processed PM (PPM), the similarities and differences between them in the treatment of vascular dementia (VaD) is intriguing. In this study, a VaD rat model was constructed by 2−vessel occlusion (2−VO). During 28 days of treatment, plasma was collected on days 7, 14, 21, and 28 after the start of dosing and the metabolic profile was analyzed by HPLC−MS/MS−based metabolomics. The Morris Water Maze Test, hematoxylin–eosin and Nissl staining, and biochemical analysis were used to assess cognitive function, pathogenic alterations and oxidative stress, respectively. RPM and PPM effectivelyreducedthe 2VO−induced cognitive impairment and mitigated histological alterations in hippocampus tissue. The 2−VO model significantly elevated MDA level and decreased SOD activity and GSH level, indicating severe oxidative stress, which could also be attenuated by RPM and PPM treatment. RPM outperformed PPM in decreasing MDA levels while PPM outperformed RPM in increasing GSH levels. Differential metabolites were subjected to Metabolite Set Enrichment Analysis (MSEA) and genes corresponding to proteins having interactions with metabolites were further annotated with Gene Ontology (GO). Both RPM and PPM ameliorated VaD−relevant vitamin B6 metabolism, pentose phosphate pathways, and taurine and hypotaurine metabolism. In addition, the metabolism of cysteine and methionine was regulated only by RPM, and riboflavin metabolism was modulated only by PPM. The results suggested that raw and processed PM had comparable efficacy in the treatment of VaD but also with some mechanistic differenece
    corecore