2,366 research outputs found

    Dynamic response of structural elements exposed to sonic booms

    Get PDF
    Dynamic response of uniform beams and plates exposed to sonic boom

    Modeling Envisat RA-2 waveforms in the coastal zone: case-study of calm water contamination

    Get PDF
    Radar altimeters have so far had limited use in the coastal zone, the area with most societal impact. This is due to both lack of, or insufficient accuracy in the necessary corrections, and more complicated altimeter signals. This paper examines waveform data from the Envisat RA-2 as it passes regularly over Pianosa (a 10 km2 island in the NW Mediterranean). Forty-six repeat passes were analysed, with most showing a reduction in signal upon passing over the island, with weak early returns corresponding to the reflections from land. Intriguingly one third of cases showed an anomalously bright hyperbolic feature. This feature may be due to extremely calm waters in the Golfo della Botte (northern side of the island), but the cause of its intermittency is not clear. The modelling of waveforms in such a complex land/sea environment demonstrates the potential for sea surface height retrievals much closer to the coast than is achieved by routine processing. The long-term development of altimetric records in the coastal zone will not only improve the calibration of altimetric data with coastal tide gauges, but also greatly enhance the study of storm surges and other coastal phenomena

    Transmission of sonic boom pressure through a window pane

    Get PDF
    Transmission of sonic boom pressure through glass window pane

    A comparative study of two formal semantics of the SIGNAL language

    Get PDF
    International audienceSIGNAL is a part of the synchronous languages family, which are broadly used in the design of safety-critical real-time systems such as avionics, space systems, and nuclear power plants. There exist several semantics for SIGNAL, such as denotational semantics based on traces (called trace semantics), denotational semantics based on tags (called tagged model semantics), operational semantics presented by structural style through an inductive definition of the set of possible transitions, operational semantics defined by synchronous transition systems (STS), etc. However, there is little research about the equivalence between these semantics.In this work, we would like to prove the equivalence between the trace semantics and the tagged model semantics, to get a determined and precise semantics of the SIGNAL language. These two semantics have several different definitions respectively, we select appropriate ones and mechanize them in the Coq platform, the Coq expressions of the abstract syntax of SIGNAL and the two semantics domains, i.e., the trace model and the tagged model, are also given. The distance between these two semantics discourages a direct proof of equivalence. Instead, we transformthem to an intermediate model, which mixes the features of both the trace semantics and the tagged model semantics. Finally, we get a determined and precise semantics of SIGNAL

    THE PROBLEM OF MEASURING THE ABSOLUTE YIELD OF 14-Mev NEUTRONS BY MEANS OF AN ALPHA COUNTER

    Full text link
    The assumptions used to derive the total neutron yield per detected alpha particle (from the D-T reaction) which were derived in an earlier report are reexamined in the light of additional experimental information. It is concluded that for an alpha counter at 90 deg to the incident beam direction the assumptions introduce practically no difficulties. Therefore, for precise monitoring in the absence of certain target information it is recommended that this configuration be used. For counters at angles different from 90 deg , nonuniformity of target loading contributes the most serious error to the computed yield. (auth

    Fitting in a complex chi^2 landscape using an optimized hypersurface sampling

    Full text link
    Fitting a data set with a parametrized model can be seen geometrically as finding the global minimum of the chi^2 hypersurface, depending on a set of parameters {P_i}. This is usually done using the Levenberg-Marquardt algorithm. The main drawback of this algorithm is that despite of its fast convergence, it can get stuck if the parameters are not initialized close to the final solution. We propose a modification of the Metropolis algorithm introducing a parameter step tuning that optimizes the sampling of parameter space. The ability of the parameter tuning algorithm together with simulated annealing to find the global chi^2 hypersurface minimum, jumping across chi^2{P_i} barriers when necessary, is demonstrated with synthetic functions and with real data

    Reduced Levels of Cerebrospinal Fluid/Plasma Aβ40 as an Early Biomarker for Cerebral Amyloid Angiopathy in RTg-DI Rats

    Get PDF
    The accumulation of fibrillar amyloid β-protein (Aβ) in blood vessels of the brain, the condition known as cerebral amyloid angiopathy (CAA), is a common small vessel disease that promotes cognitive impairment and is strongly associated with Alzheimer’s disease. Presently, the clinical diagnosis of this condition relies on neuroimaging markers largely associated with cerebral macro/microbleeds. However, these are markers of late-stage disease detected after extensive cerebral vascular amyloid accumulation has become chronic. Recently, we generated a novel transgenic rat model of CAA (rTg-DI) that recapitulates multiple aspects of human CAA disease with the progressive accumulation of cerebral vascular amyloid, largely composed of Aβ40, and the consistent emergence of subsequent microbleeds. Here, we investigated the levels of Aβ40 in the cerebrospinal fluid (CSF) and plasma of rTg-DI rats as CAA progressed from inception to late stage disease. The levels of Aβ40 in CSF and plasma precipitously dropped at the early onset of CAA accumulation at three months of age and continued to decrease with the progression of disease. Notably, the reduction in CSF/plasma Aβ40 levels preceded the emergence of cerebral microbleeds, which first occurred at about six months of age, as detected by in vivo magnetic resonance imaging and histological staining of brain tissue. These findings support the concept that reduced CSF/plasma levels of Aβ40 could serve as a biomarker for early stage CAA disease prior to the onset of cerebral microbleeds for future therapeutic intervention

    Mapping the X-Ray Emission Region in a Laser-Plasma Accelerator

    Full text link
    The x-ray emission in laser-plasma accelerators can be a powerful tool to understand the physics of relativistic laser-plasma interaction. It is shown here that the mapping of betatron x-ray radiation can be obtained from the x-ray beam profile when an aperture mask is positioned just beyond the end of the emission region. The influence of the plasma density on the position and the longitudinal profile of the x-ray emission is investigated and compared to particle-in-cell simulations. The measurement of the x-ray emission position and length provides insight on the dynamics of the interaction, including the electron self-injection region, possible multiple injection, and the role of the electron beam driven wakefield.Comment: 5 pages, 4 figure

    An electromagnetic simulator for sentinel-3 sar altimeter waveforms over land part ii: forests

    Get PDF
    Forests play a crucial role in the climate change mitigation by acting as sinks for carbon and, consequently, reducing the CO2 concentration in the atmosphere and slowing global warming. For this reason, above ground biomass (AGB) estimation is essential for effectively monitoring forest health around the globe. Although remote sensing–based forest AGB quantification can be pursued in different ways, in this work we discuss a new technique for vegetation observation through the use of altimetry data that has been introduced by the ESA-funded ALtimetry for BIOMass (ALBIOM) project. ALBIOM investigates the possibility of retrieving forest biomass through Copernicus Sentinel-3 Synthetic Aperture Radar Altimeter (SRAL) measurements at Ku- and C-bands in low- and high-resolution mode. To reach this goal, a simulator able to reproduce the altimeter acquisition system and the scattering phenomena that occur in the interaction of the radar altimeter pulse with vegetated surfaces has been developed. The Tor Vergata Vegetation Scattering Model (TOVSM) developed at Tor Vergata University has been exploited to simulate the contribution from the vegetation volume via the modelling of the backscattering of forest canopy through a discrete scatterer representation. A modification of the SAVERS (Soil And Vegetation Reflection Simulator) simulator developed by the team for Global Navigation Satellite System Reflectometry over land has also been taken into account to simulate the soil contribution
    • …
    corecore