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l. Introduction

In previous studies<l) of the effects of sonic booms on
structures, the structurdl elements were assumed to be sub jected to
the outside overpressure. Actually, a certain amount of energy is
transmitted to the interior of the structure and exterior structural
elements are subjected to a net pressure equal to the difference between
exterior and interior overpressure,

The computation of the actual net pressure would be a hopeless
task since the interior overpressures depend on the multiple reflections
and the absorption of sound waves byﬂwalls, floors and ceilings. As
an approximation of the situation near a window, the case of an elastic
plate set in an rigid, infinite baffle and subjected to an N-shaped
sonic boom normal to its plane was studied. The plate was assumed
square an@ simply supported along its edges.,

Related studies in the literature are by Morse(z) in the
study of the transmission of monochromatic vibrations from one acous-
tic medium to another through a circular membrane set in an infinite
baffle and by O'Callahan and Madden(3) in the study of the interaction
of a free stream of an ideal gas with a circular membrane set in an
infinite rigid wall. The former study was by a variational method

while the latter used finite difference equations,
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2., Nomenclature

area of squaresplate

radius of circular plate

speed of sound in air

speed of sound in plate material
flexural rigidity of plate

modulus of elasticity of plate

time factor in normal series expansion

unif step function
plate thickness

wave number in air ZHYA = W/c
side of square plate

free field pressure

maximum overpressure in p(t)
interior pressure

exterior pressure

Pext = Pint

coefficiént of g in normal series expansion
/Ty

distance between 2 points in plate
fundamental period of plate |
time -

plate deflection

= normal function

coordinates
time increment

wave length
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Poisson's ratio

power transmitted to the interilor
power impinging on plate

density of air

density of plate material

gonic boom duration

circular frequency

th

circular frequency in m, n~ mede




3., Formulation of the Problem

The equation of motion of the plate is taken according to
(4)

the elementary theory of plates,
DV + ghw=q (1)
where w is the plate deflection, D is the stiffness of the plate,
h its thickness and 9g the density of its material and q = Paxt
— pint the net pressure equal to outside pressure minus inside
pressure,
The net pressure is given in terms of the pressure pulse

' r
p(t) and the deflection w (x,y,t) through the equation\i]

A0g,8) = 2 p(¥) - - || BHCASET ady (2)
where A
e o= - x)E 4y -y )* (3)

gxis the density of air, ¢ is the speed of sound, and where the
integration is over the area A of the plate. The pressure
pulse will be taken as the familiar N wave (Fig.‘l)
p(t) = B (V- Z)H(x-t) @
where H(t) is the unit step function w
éhe initial conditions on the plate will be taken as
w(x,y,0) = w(x,y,0) = 0 | (5)

while the boundary conditions are (see fig, 2)

w(0,0,£) = w(0,L,t) = w(L,0,t) = w(L,L,t) = 0 (6)
4. Solution
A numerical solution of the problem is obtained by using
finite differences on the time variable and the normal mode
expansion for the space variable. The solution is taken in

the form ‘ ‘ (7)
W(X) Y,t) = %% Wmn(*;\_-}) Smn(t)

Eﬂ See Appendix for derivation



where wmn(x,Y) represent the normal mode
Smix SNy
- L
with m, n integers
Using the modal representation (7) and the orthoganality
of the normal modes, the eguation of motion of the plate re-

duces to the 0.D.E.

,y“,;> A~ mim %mg‘{:) = %ﬁ‘é\-‘? (7)
where wmn is the circular frequency as;;ciated with wmn(x'y)
and

3,8 = & [[wmn09) q00y,t) axdy o)

which, by the use of (2) can be written as:

QMV\ = VW\V\P(t) —

—&%Es_ H;(S‘“'“"" SUIATY SuUax sy S“EF ) 4.4 oy (o)

n* L -
e
where
32 .
Pm“ e if both m,n (10)
= 0 otherwise

and where r is given by (3)
In obtaining a numerical solution equation (7)

is solved by finite dlfferences and)ln using (9) to compute

Ay ) Ehe summation is truncated while the 1ntegration is replaced

N
-

by a summation,




5. Numerical Results

The case considered was that of a glass pane with

% = 250. The relative densities of glass and air werxe taken
as 2,5 and 0,00129 respectively. Numerical results were

obtained for two particular values of R = é%;- viz R =1

R =3, In both cases the series was truncated to its first

term, In solving the ordinary differential equation (7) by

finite differences the time step was taken as t = %— g

»

i.e. one tenth of the time required for sound to sweep the

plate., The following recurrence formulae were used:(5>
9(t)= gk -At) + i.'i[-23<§(b-£\b)—\.6§(b—2&) +5 §(t-2m-.)] y
9C6) = g(k-A6)+ L[53( + B§(k-a) - §(6-24t)]

combined with simple two-term formula' for the first two steps.

(11)

The results are presented in the graphs of Figs. 3

(k (t) - pp(e)
and 4 in which the values of -31—\ and ut) ‘Rf
£ qn(o) qu(O)
are plotted as functions of =—— . Results were obtained for

Tay
values of ;ii up to 2,0 since little departure from periodicity

is expected beyond this value.

The cdmputations were carried out at the City College
- Computation Center on a IBM 350—50.7 The mosﬁifime-consuming
part of the computation was the evaluation of the quadruple
integral occurring in eQuation (9). The total computation time

for each case was ten minutes,




. 5

6. Discussinn

It is clear from the graphs of Fig, 3 that the
ma jor contribution to transmitted pressure occurs immediately
following the discontinuities in the pressure pulse, A
comparison of transmitted pressure due to an N-wave and that
due to a step pulse with the same initial pressure rise is
shown in Fig. 3; the two curves &re hardly distinguishable,

The transmitted presstire seems to build up almost
linearly to its maximum at time 0,7 % which is approximately
the time required for a sound wave to travel from the corner
to the center of the square plate. The magnitude of the
maximum transmitted pressure can be. rcughly checked by |
assuming that the acceleration remains constant and equal to

Eﬁ? and that the plate moves as a rigid circular disc

of %adius %_. Application of the integral in (2) yields the

expression
(12)

= 2p-q = L =
2p. = 2p-q= £ L qO q0) = 2F,
5 b |

For the numerical values used, this is equal to O.l3c'(0) which
is of the same order of magnitude as the value of 0.07q@)ob—
tained from the graph. If instead of assuming that the

plate moves ag a rigid disc, a cosine law of acceleration vari-

ation is assumed with maximum at the center and vanishing at

the edges, a value closer to the computed value is obtained viz

a'P\,w\» = %%;_‘% Q(O) Q(O) = 2'?0 (13)

yielding a value ong.OBSq(o).



TS S VA SR e e

The magnitude of the computed maximum value of the
transmitted pressure is quite small (0.07q@g= 0.07090) corres-
.
ponding to a power transmission loss of about 28 dB, Yet actual

(6)

measurements of pressures behind plate windows sub jected to
sonic booms seem to indicate transmitted pressures of the order of
O.SpO or transmission losges of about 6 4B,

In investigating the reason for the discrepancy, the

transmission loss for monochromatic pulses in two models will be ccom-

pared with the transmission loss of the flexural panel here considered,

The first model shown in Fig. 5 is the one dimensional
slab of thickness h with the pressure pulse transmitted from
one side to the other., The power ratio ﬂ}/ITO is given(7)
by the following approximate formula, valid if, as we assume that

the wavelength in the slab is large compared to h,

M - h ~ 4(.?:3. Y BNGTY
o 1 (S 9&)" e
i + m ’(’—-3-~9°dc g%

For frequencies between 20 and 200 Hz and a glass thickness of 1/4
in., the transmission loss according to this formula would vary
between 7.6 dB and 27.6 dB,

The second model shown in Fig. & is a rigid circular
pistoh of radius a set in plane baffle, Using t;e asymptotic
expressions of the impedance for high and 1ow’frequencies(7) the

following expressions are fo&nd for the power ratio

For ka =°-‘)&2f>>i

m. 4 - =4(_?:S_)1 ‘ﬁ‘ (15a)
Foo

T | . L 4 N
\+A(§1kh+m



T T T TRR A BT TR Y

For ka = a—?—((l (say(%?-(, D)
” 2.
T _ 1 2(.?9: 3:-) (15b)
o Mty _L.(g& h 416 Sy h
Seo | 3n

It is interesting to note that the power ratio for the rigid piston
tends to the expression for the one-dimensional slab for high fre-
quencies and to an expression similar to that of Egs. (12) & (13)
for low frequencies, It thus appears that, for low frequencies,
the approximate formula (13) and therefore the calculated trans-
mitted pressures are verified. For higher frequencies the trans-
mission loss seems not to depend on the ratio a/h but rather on
A/h.
Thus the lower transmission losses measured at the
Edwards Air Force Base tests(G) must be attributed to the likeli-
hood that in the test frame houses much of the energy is transmitted
through the roof and wall panels rather than through the windows,
An indirect proof of the above statement lies in the almost non-
existent correlation between the platé glass window displacement
(which were measured by strain gages) and the internal pressure
(which was monitored by a microphome) in its impediate‘vicinitycﬁ)
(Fig. G23, 624; G25§ subsequent £0 £he passing of pressuare wave,
One laSt remark may be mede concerning Eq., 12: It
might at first seem strange that the stiffness of the plate does
not enter this formula. If, however, it is remembered that the
derivation of the formula assumed i constanﬁ acceleration J%H
during the time it takes the sound to travel the span L, thg%kit
is seen that the stiffness will noct affect the result provided
that the fundamental period of the pane T ~is large compared to

c

L

‘This seems to ‘be the case fou ordlnaky window panes
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since it reduces, after some manipulation, to

[ ,.\}7-'
(120-v) L ¢ S |
where Cq =\,j;‘v
Y

¥

(16)

or, substituting numerical values for glass:

e \4,S (17)
w >
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7. Conclusions

The pressure transmitted through a sqguare window for a
normal N~wave has been computed under the assumption that the win-
dow is set in a rigid baffle, For usual dimensions the pressure
transmitted has small magnitude {about 0.,035¢(0))

A gimple approximate formula, was developed (Eq. 13) which
can be used in most cases common1y~ehcountered in practice.

The computed transmitﬁéd pressure are much less than
the internal pressure meashred in frame houses during sonic boom
experiments, It is believed that the discrepancy is due to trans-

mission of pressure through the areas of wall and roof as well as

windows.,
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Appendix
Derivation of Equation (2)

Let the Fourier transform of a time-dependent gquantity

%x( %t ) be denoted by

oo

'd
A
X (W) = J x(eye dt
-0
Then, in the frequency domain w , the transmission problem

shown in Fig. 2 reduces to finding p_ (x,v,2,w) defined for z<£ 0,

Pint (x,y,z,w) defined for z 20, which satisfy:

A -~ The reduced wave equation:

(R T . .
Ve + kp =0 k=3 (18)
B -~ The following boundary condition for z = 0
A A A ' »%
Py - OPuat . gw'w ¢ Oxx%L
Bz X3 | | oCsys L (19)
A A . ‘
- Pt
OPuxr » Lk o o otherwise
Dz oz
C - The following radiation conditiong: The solution
A A
Pint corresponds to an outgoing wave while the solution Poyt CON-
tains the wave g(&))e-ikz travelling along the positive z direction,

a wave travelling along the negative z direction, and an outgoing wave,
Using the properties of the Green function for a plane(z)

it can be seen that all conditions A,B,C are satisfied by

X v e L

= B fere o2 ffede ity o
| LR

. | -Lw R

P\,V\\‘ = | - é‘_g_ljj \’J\\)(K,, 31 Q)) ecdx/dﬁ/
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where R = V@-x’)"-&-(‘g—s')‘% e and A is the area
of the square plats

Since the conditions A,B, C define a problem having a
unique solution, the above formulas solve the transmission problem
in the frequency domain in terms of CJ'.

By the definition of ¢q one finds from (20)

" A
q(x,a)wja \3‘“*(*)\3)@,'—0) - Pw\\.Cx)sjo) \0)

- LW

_ A C-L)‘i \,;\)(‘K/)a/} )e?r / y
2p(w) + 9"1"1" jL w&jw Ax'dy

From the well-known differentiation and shifting proper-

(21)

ties of the Fourier transform, egqg. (2) follows from eg. (21),
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