294 research outputs found

    Udvikling af materialer til brintpermeable membraner

    Get PDF

    The volume-expanding effects of autologous liquid stored plasma following hemorrhage.

    Get PDF
    Background: Plasma use has increased since studies have suggested that early treatment with blood components in trauma with severe hemorrhage may improve outcome. Plasma is also commonly used to correct coagulation disturbances in non-bleeding patients. Little is known about the effects of plasma transfusion on plasma volume. We report a prospective interventional study in which the plasma volume-expanding effect of autologous plasma was investigated after a controlled hemorrhage. Methods: Plasma obtained by plasmapheresis from nine healthy regular blood donors was stored at 2-6°C. Five weeks after donation the subjects were bled of 600 ml and then transfused with 600 ml of autologous plasma. Plasma volume was estimated using (125)I-albumin before and after bleeding, and immediately after plasma transfusion. Plasma volume changes were then estimated by measuring changes in hematocrit during the following 3-h period. Results: Estimated plasma volume after bleeding was 3170 ± 320 ml and 3690 ± 380 ml (mean ± standard deviation) immediately following the transfusion of plasma (p 0.05). This increase in plasma volume corresponds to 86 ± 13% of the infused volume. Three hours after transfusion, plasma volume was still 3680 ± 410 ml. Conclusions: Stored liquid plasma has a plasma volume expanding effect up to 86% of its infused volume with a duration of at least 3 h

    A Wireless Future: performance art, interaction and the brain-computer interfaces

    Get PDF
    Although the use of Brain-Computer Interfaces (BCIs) in the arts originates in the 1960s, there is a limited number of known applications in the context of real-time audio-visual and mixed-media performances and accordingly the knowledge base of this area has not been developed sufficiently. Among the reasons are the difficulties and the unknown parameters involved in the design and implementation of the BCIs. However today, with the dissemination of the new wireless devices, the field is rapidly growing and changing. In this frame, we examine a selection of representative works and artists, in comparison to the current scientific evidence. We identify important performative and neuroscientific aspects, issues and challenges. A model of possible interactions between the performers and the audience is discussed and future trends regarding liveness and interconnectivity are suggested

    Phenotypic characterization and candidate gene analysis of a short kernel and brassinosteroid insensitive mutant from hexaploid oat (Avena sativa)

    Get PDF
    In an ethyl methanesulfonate oat (Avena sativa) mutant population we have found a mutant with striking differences to the wild-type (WT) cv. Belinda. We phenotyped the mutant and compared it to the WT. The mutant was crossed to the WT and mapping-by-sequencing was performed on a pool of F2 individuals sharing the mutant phenotype, and variants were called. The impacts of the variants on genes present in the reference genome annotation were estimated. The mutant allele frequency distribution was combined with expression data to identify which among the affected genes was likely to cause the observed phenotype. A brassinosteroid sensitivity assay was performed to validate one of the identified candidates. A literature search was performed to identify homologs of genes known to be involved in seed shape from other species. The mutant had short kernels, compact spikelets, altered plant architecture, and was found to be insensitive to brassinosteroids when compared to the WT. The segregation of WT and mutant phenotypes in the F2 population was indicative of a recessive mutation of a single locus. The causal mutation was found to be one of 123 single-nucleotide polymorphisms (SNPs) spanning the entire chromosome 3A, with further filtering narrowing this down to six candidate genes. In-depth analysis of these candidate genes and the brassinosteroid sensitivity assay suggest that a Pro303Leu substitution in AVESA.00010b.r2.3AG0419820.1 could be the causal mutation of the short kernel mutant phenotype. We identified 298 oat proteins belonging to orthogroups of previously published seed shape genes, with AVESA.00010b.r2.3AG0419820.1 being the only of these affected by a SNP in the mutant. The AVESA.00010b.r2.3AG0419820.1 candidate is functionally annotated as a GSK3/SHAGGY-like kinase with homologs in Arabidopsis, wheat, barley, rice, and maize, with several of these proteins having known mutants giving rise to brassinosteroid insensitivity and shorter seeds. The substitution in AVESA.00010b.r2.3AG0419820.1 affects a residue with a known gain-of function substitution in Arabidopsis BRASSINOSTEROID-INSENSITIVE2. We propose a gain-of-function mutation in AVESA.00010b.r2.3AG0419820.1 as the most likely cause of the observed phenotype, and name the gene AsGSK2.1. The findings presented here provide potential targets for oat breeders, and a step on the way towards understanding brassinosteroid signaling, seed shape and nutrition in oats

    The mosaic oat genome gives insights into a uniquely healthy cereal crop

    Get PDF
    Cultivated oat (Avena sativa L.) is an allohexaploid (AACCDD, 2n = 6x = 42) thought to have been domesticated more than 3,000 years ago while growing as a weed in wheat, emmer and barley fields in Anatolia1,2. Oat has a low carbon footprint, substantial health benefits and the potential to replace animal-based food products. However, the lack of a fully annotated reference genome has hampered efforts to deconvolute its complex evolutionary history and functional gene dynamics. Here we present a high-quality reference genome of A. sativa and close relatives of its diploid (Avena longiglumis, AA, 2n = 14) and tetraploid (Avena insularis, CCDD, 2n = 4x = 28) progenitors. We reveal the mosaic structure of the oat genome, trace large-scale genomic reorganizations in the polyploidization history of oat and illustrate a breeding barrier associated with the genome architecture of oat. We showcase detailed analyses of gene families implicated in human health and nutrition, which adds to the evidence supporting oat safety in gluten-free diets, and we perform mapping-by-sequencing of an agronomic trait related to water-use efficiency. This resource for the Avena genus will help to leverage knowledge from other cereal genomes, improve understanding of basic oat biology and accelerate genomics-assisted breeding and reanalysis of quantitative trait studies
    • …
    corecore