6,403 research outputs found
The Galeleo spacecraft magnetometer boom
The Galileo spacecraft utilizes a deployable lattice boom to position three science instruments at remote distances from the spacecraft body. An improved structure and mechanism to precisely control deployment of the boom, and the unique deployment of an outer protective cover are described
Measurement of Particulate Transition Metals and Atmospheric Processing of Iron
The work presented herein details the measurement of particle-bound metals in environmental samples with specific interests in iron (Fe) in atmospheric particulate matter. Metals were measured in ambient PM2.5 to study the effects and contributions of a light rail system on the concentrations of metals in atmospheric particles. Particulate matter samples were collected on board trains, near the tracks, and at an urban background location in Denver, CO. Metals were found to be enriched in particles collected on board the trains more so than at the other locations. Fe speciation was also measured in the soluble fraction of the sample and the results showed the contribution of anthropogenic iron to the collected particles.
Lab-created simulated marine particles were used to study the different variables affecting Fe solubility in atmospheric particulate matter during atmospheric transport. The effects of particle size, mineralogy, exposure to sulfur dioxide, and relative humidity were investigated. Particle size and mineralogy were shown to have the largest effect on iron solubility with particles with smaller aerodynamic diameters containing more soluble Fe. Sulfur was incorporated onto the particles however XANES measurements showed no effect on Fe chemistry or speciation.
Fe, Au, and Ag nanoparticles in aquatic matrices were also investigated as part of a two-fold spICPMS experiment. The first study focused on observing formation of Fe nanoparticles in seawater. This led to the development of a new way to introduce a sample to the instrument as well as the second study; identifying a particle pulse in the presence of dissolved analyte. Using well characterized Au particles, a mathematical method using the mode and standard deviation of the dataset was developed and successfully used to distinguish a particle signal pulse from that of the background. This method was validated using a nanotechnology-enabled consumer spray containing both dissolved and particle Ag. This method allows for more universal use of spICPMS
Equine Review
This article contains a quiz pertaining to topics of equine medicine for the benefit of students of the College of Veterinary Medicine
Radiation exposure of LDEF: Initial results
Initial results from LDEF include radiation detector measurements from four experiments, P0006, P0004, M0004, and A0015. The detectors were located on both the leading and trailing edges of the orbiter and also on the Earthside end. This allowed the directional dependence of the incoming radiation to be measured. Total absorbed doses from thermoluminescent detectors (TLDs) verified the predicted spatial east-west dose ratio dependence of a factor approx. 2.5, due to trapped proton anisotropy in the South Atlantic Anomaly. On the trailing edge of the orbiter a range of doses from 6.64 to 2.91 Gy were measured under Al equivalent shielding of 0.42 to 1.11 g/sq cm. A second set of detectors near this location yielded doses of 6.48 to 2.66 Gy under Al equivalent shielding of 0.48 to 15.4 g/sq cm. On the leading edge, doses of 2.58 to 2.10 Gy were found under Al equivalent shielding of 1.37 to 2.90 g/sq cm. Initial charged particle LET (linear energy transfer) spectra, fluxes, doses and dose equivalents, for LET in H2O greater than or = 8 keV/micron, were measured with plastic nuclear track detectors (PNTDs) located in two experiments. Also preliminary data on low energy neutrons were obtained from detectors containing (6)LiF foils
Charged particle LET-spectra measurements aboard LDEF
The linear energy transfer (LET) spectra of charged particles was measured in the 5 to 250 keV/micron (water) interval with CR-39 and in the 500 to 1500 keV/micron (water) interval with polycarbonate plastic nuclear track detectors (PNTDs) under different shielding depths in the P0006 experiment. The optimal processing conditions were determined for both PNTDs in relation to the relatively high track densities due to the long term exposure in space. The total track density was measured over the selected samples, and tracks in coincidence on the facing surfaces of two detector sheets were selected for measuring at the same position on each sheet. The short range (SR) and Galactic Cosmic Ray (GCR) components were measured separately with CR-39 PNTDs and the integral dose and dose rate spectra of charged particles were also determined. The high LET portion of the LET spectra was measured with polycarbonate PNTDs with high statistical accuracy. This is a unique result of this exposure due to the low flux of these types of particles for typical spaceflight durations. The directional dependence of the charged particles at the position of the P0006 experiment was also studied by four small side stacks which surrounded the main stack and by analyzing the dip angle and polar angle distributions of the measured SR and GCR particle tracks in the main stack
Macroevolutionary Patterns In The Evolutionary Radiation Of Archosaurs (Tetrapoda: Diapsida)
The rise of archosaurs during the Triassic and Early Jurassic has been treated as a classic example of an evolutionary radiation in the fossil record. This paper reviews published studies and provides new data on archosaur lineage origination, diversity and lineage evolution, morphological disparity, rates of morphological character change, and faunal abundance during the Triassic–Early Jurassic. The fundamental archosaur lineages originated early in the Triassic, in concert with the highest rates of character change. Disparity and diversity peaked later, during the Norian, but the most significant increase in disparity occurred before maximum diversity. Archosaurs were rare components of Early–Middle Triassic faunas, but were more abundant in the Late Triassic and pre-eminent globally by the Early Jurassic. The archosaur radiation was a drawn-out event and major components such as diversity and abundance were discordant from each other. Crurotarsans (crocodile-line archosaurs) were more disparate, diverse, and abundant than avemetatarsalians (bird-line archosaurs, including dinosaurs) during the Late Triassic, but these roles were reversed in the Early Jurassic. There is no strong evidence that dinosaurs outcompeted or gradually eclipsed crurotarsans during the Late Triassic. Instead, crurotarsan diversity decreased precipitously by the end-Triassic extinction, which helped usher in the age of dinosaurian dominance
- …