5,740 research outputs found

    Weak lensing of the Lyman-alpha forest

    Full text link
    The angular positions of quasars are deflected by the gravitational lensing effect of foreground matter. The Lyman-alpha forest seen in the spectra of these quasars is therefore also lensed. We propose that the signature of weak gravitational lensing of the forest could be measured using similar techniques that have been applied to the lensed Cosmic Microwave Background, and which have also been proposed for application to spectral data from 21cm radio telescopes. As with 21cm data, the forest has the advantage of spectral information, potentially yielding many lensed "slices" at different redshifts. We perform an illustrative idealized test, generating a high resolution angular grid of quasars (of order arcminute separation), and lensing the Lyman-alphaforest spectra at redshifts z=2-3 using a foreground density field. We find that standard quadratic estimators can be used to reconstruct images of the foreground mass distribution at z~1. There currently exists a wealth of Lya forest data from quasar and galaxy spectral surveys, with smaller sightline separations expected in the future. Lyman-alpha forest lensing is sensitive to the foreground mass distribution at redshifts intermediate between CMB lensing and galaxy shear, and avoids the difficulties of shape measurement associated with the latter. With further refinement and application of mass reconstruction techniques, weak gravitational lensing of the high redshift Lya forest may become a useful new cosmological probe.Comment: 9 pages, 7 figures, submitted to MNRA

    Noise Estimates for Measurements of Weak Lensing from the Lyman-alpha Forest

    Full text link
    We have proposed a method for measuring weak lensing using the Lyman-alpha forest. Here we estimate the noise expected in weak lensing maps and power spectra for different sets of observational parameters. We find that surveys of the size and quality of the ones being done today and ones planned for the future will be able to measure the lensing power spectrum at a source redshift of z~2.5 with high precision and even be able to image the distribution of foreground matter with high fidelity on degree scales. For example, we predict that Lyman-alpha forest lensing measurement from the Dark Energy Spectroscopic Instrument survey should yield the mass fluctuation amplitude with statistical errors of 1.5%. By dividing the redshift range into multiple bins some tomographic lensing information should be accessible as well. This would allow for cosmological lensing measurements at higher redshift than are accessible with galaxy shear surveys and correspondingly better constraints on the evolution of dark energy at relatively early times.Comment: 8 pages, 8 figures, submitted to MNRA

    A putative origin of the insect chemosensory receptor superfamily in the last common eukaryotic ancestor

    Get PDF
    The insect chemosensory repertoires of Odorant Receptors (ORs) and Gustatory Receptors (GRs) together represent one of the largest families of ligand-gated ion channels. Previous analyses have identified homologous 'Gustatory Receptor-Like (GRL)' proteins across Animalia, but the evolutionary origin of this novel class of ion channels is unknown. We describe a survey of unicellular eukaryotic genomes for GRLs, identifying several candidates in fungi, protists and algae that contain many structural features characteristic of animal GRLs. The existence of these proteins in unicellular eukaryotes, together with ab initio protein structure predictions, provide evidence for homology between GRLs and a family of uncharacterized plant proteins containing the DUF3537 domain. Together, our analyses suggest an origin of this protein superfamily in the last common eukaryotic ancestor

    Bridging Primary Programming and Mathematics: some findings of design research in England

    Get PDF
    In this paper we present the background, aims and methodology of the ScratchMaths (SM) project, which has designed curriculum materials and professional development (PD) to support mathematical learning through programming for pupils aged between 9 and 11 years. The project was framed by the particular context of computing in the English education system alongside the long history of research and development in programming and mathematics. In this paper, we present a “framework for action” (diSessa and Cobb 2004) following design research that looked to develop an evidence-based curriculum intervention around carefully chosen mathematical and computational concepts. As a first step in teasing out factors for successful implementation and addressing any gap between our design intentions and teacher delivery, we focus on two key foundational concepts within the SM curriculum: the concept of algorithm and of 360-degree total turn. We found that our intervention as a whole enabled teachers with different backgrounds and levels of confidence to tailor the delivery of the SM in ways that can make these challenging concepts more accessible for both themselves and their pupils

    Building mathematical knowledge with programming: insights from the ScratchMaths project

    Get PDF
    The ScratchMaths (SM) project sets out to exploit the recent commitment to programming in schools in England for the benefit of mathematics learning and reasoning. This design research project aims to introduce students (age 9-11 years) to computational thinking as a medium for exploring mathematics following a constructionist approach. This paper outlines the project and then focuses on two tensions related to (i) the tool and learning, and (ii) direction and discovery, which can arise within constructionist learning environments and describes how these tensions were addressed through the design of the SM curriculum

    Are multiphase competition & order-by-disorder the keys to understanding Yb2Ti2O7?

    Full text link
    If magnetic frustration is most commonly known for undermining long-range order, as famously illustrated by spin liquids, the ability of matter to develop new collective mechanisms in order to fight frustration is no less fascinating, providing an avenue for the exploration and discovery of unconventional properties of matter. Here we study an ideal minimal model of such mechanisms which, incidentally, pertains to the perplexing quantum spin ice candidate Yb2Ti2O7. Specifically, we explain how thermal and quantum fluctuations, optimized by order-by-disorder selection, conspire to expand the stability region of an accidentally degenerate continuous symmetry U(1) manifold against the classical splayed ferromagnetic ground state that is displayed by the sister compound Yb2Sn2O7. The resulting competition gives rise to multiple phase transitions, in striking similitude with recent experiments on Yb2Ti2O7 [Lhotel et al., Phys. Rev. B 89 224419 (2014)]. Considering the effective Hamiltonian determined for Yb2Ti2O7, we provide, by combining a gamut of numerical techniques, compelling evidence that such multiphase competition is the long-sought missing key to understanding the intrinsic properties of this material. As a corollary, our work offers a pertinent illustration of the influence of chemical pressure in rare-earth pyrochlores.Comment: 9 page

    Beyond jam sandwiches and cups of tea: An exploration of primary pupils' algorithm‐evaluation strategies

    Get PDF
    The long-standing debate into the potential benefit of developing mathematical thinking skills through learning to program has been reignited with the widespread introduction of programming in schools across many countries, including England where it is a statutory requirement for all pupils to be taught programming from five years old. Algorithm is introduced early in the English computing curriculum, yet, there is limited knowledge of how young pupils view this concept. This paper explores pupils’ (aged 10-11) understandings of algorithm following their engagement with one year of ScratchMaths (SM), a curriculum designed to develop computational and mathematical thinking skills through learning to program. 181 pupils from six schools undertook a set of written tasks to assess their interpretations and evaluations of different algorithms that solve the same problem, with a subset of these pupils subsequently interviewed to probe their understandings in greater depth. We discuss the different approaches identified, the evaluation criteria they used and the aspects of the concept that pupils found intuitive or challenging, such as simplification and abstraction. The paper ends with some reflections on the implications of the research, concluding with a set of recommendations for pedagogy in developing primary pupils’ algorithmic thinking

    Challenges Of The UNCG/Tec De Monterrey/Disney College Program

    Get PDF
    This report is based on a study of participants in an international, academic exchange program that includes a Walt Disney World internship. The University of North Carolina at Greensboro (UNCG) was a principal partner in developing the UNCG/Tec de Monterrey/Disney College Program (UNCG Program). This cooperative arrangement involves students enrolled in degree programs at one of the Tec de Monterrey campuses in Mexico. The report analyzes the challenges faced by the UNCG Program Director and assisting faculty in the early development of the UNCG Program as well as the challenges presented since the Program has matured
    • 

    corecore