

Footer – Please leave the footer blank

Building mathematical knowledge with
programming: insights from the ScratchMaths
project
Laura Benton*, l.benton@ucl.ac.uk; Celia Hoyles*, c.hoyles@ioe.ac.uk; Ivan Kalas*^,
i.kalas@ioe.ac.uk; kalas@fmph.uniba.sk; Richard Noss*, r.noss@ioe.ac.uk
* London Knowledge Lab, UCL Institute of Education, 23-29 Emerald Street, London, UK
^ Dept. of Informatics Education, Comenius University, Bratislava, Slovakia

Abstract
The ScratchMaths (SM) project sets out to exploit the recent commitment to programming in
schools in England for the benefit of mathematics learning and reasoning. This design research
project aims to introduce students (age 9-11 years) to computational thinking as a medium for
exploring mathematics following a constructionist approach. This paper outlines the project and
then focuses on two tensions related to (i) the tool and learning, and (ii) direction and discovery,
which can arise within constructionist learning environments and describes how these tensions
were addressed through the design of the SM curriculum.

Keywords
Programming; mathematics; Scratch; primary education; design research

Introduction
Computer programming is undergoing a renaissance in English schools. Recent policy and
curriculum initiatives have resulted in ICT being replaced by computing across all ages from 6 to
16 years. These changes have been motivated by a concern about students leaving school with
little understanding of computer science or the creative side of computing (Furber 2012). From
September 2014, schools in England1 have to teach the new National Computing Curriculum
(DfE 2013), which requires students to learn about how computational systems work, to use
technology safely and to design and build their own programs. At least at the policy level,
computing is recognised as not just about programming per se, but programming as a modeling
tool: a key component of thinking that allows ideas to be brought to life and explored in different
subject areas and contexts. How far this will happen in practice is of course a complex matter
shaped by schools, teachers and available resources (material and people) to support this work.

Much of the research in the field of programming within schools was conducted in the latter part
of 20th century before the advent of the many new blocks-based programming environments
developed specifically for young users (Weintrop & Wilensky 2015). One is Scratch, used by a
huge number of young children in and out of school (with over 2 million registered users aged
under 12 years). The popularity of this style of programming for use with novice programmers is
in part due to its ease of readability, composition and browsability alongside its interactivity, and
visual and dynamic outcomes (ibid).

In this paper, we introduce the ScratchMaths (SM) project, which aims to build mathematical
knowledge through programming in Scratch during a 2-year intervention for students aged 9-11
years. We set out to exploit programming to support mathematical reasoning in pre-specified
mathematical content areas and thus will explore among other areas, Papert’s (1972) claim that
learning to program in carefully designed ways should “make it easy to learn algebra and

1 Within England a growing group of schools known as academies do not have to adhere to the national curriculum so
can opt out of computing – an interesting dilemma

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UCL Discovery

https://core.ac.uk/display/79499394?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Header – Please leave the header blank

Footer – Please leave the footer blank

geometry” (p.4). We describe the design process leading to a constructionist curriculum and
professional development program where students are able to exploit the powerful ideas of
computational thinking and programming tools to engage in mathematical thinking. We borrowed
from Brennan (2015) the identification of a number of tensions in supporting constructionist
approaches2, in this paper we focus on two: the tensions between (i) tool and learning, and (ii)
direction and discovery. We describe how these tensions were addressed in the design and
implementation of the SM curriculum.

Background
Tension between tool and learning
In the 1970s and 80s the earliest research in schools took place that explored the potential of
learning mathematics through programming languages, (such as BASIC and Logo), (Hoyles &
Noss 1992). As Logo became more integrated into schools, a perception grew that programming
was too difficult to have any widespread impact on mathematics learning. An often-cited reason
for this was the perception of programming as an overhead – something to be squeezed into an
already-overcrowded curriculum. As Resnick et al. (2009) point out, the difficulty of mastering
programming syntax, and the lack of specific skills/knowledge that was required by teachers to
effectively guide or challenge students in capitalising on these early programming tools, posed
problems in exploiting this potential. There are now growing concerns that this perception may
come full circle with the ‘floor’ being lowered so far that novice programmers are discouraged –
or at least, not encouraged – from engaging with the underlying concepts, which may in part be
due to the implicit ways compilation errors are handled in tools such as Scratch. Thus, they can
achieve a visually pleasing outcome on the screen almost ‘by accident’ with no desire to ask why
it happened.

The accessibility of the programming tool, and the process of learning through programming
using the tool, is identified as the first of Brennan’s tensions. Brennan (2015) describes this as
the necessity of achieving a balance “between knowledge about the tool and understanding of
how to engage in creative design activities, using the computer for personal expression and
problem solving” (a similar analogy in mathematics education is the focus on what is termed
instrumentation) . Furthermore, there remains the critical challenge to exploit knowledge that has
been gained within programming contexts to promote engagement with mathematical ideas and
reasoning (Hoyles & Noss, 1992).

Despite recent innovations of programming tools, which aim to support a constructionist
approach to learning whilst making the tool more accessible to a more diverse range of learners,
the tension between content knowledge of the programming tool and pedagogical knowledge is
still an important issue to address within the classroom. In their commentary on Brennan’s paper
Gash and McCloughlin highlight the close relationship between content and pedagogy,
suggesting that teachers may find it easier to address the pedagogical issues. Furthermore
through their observations and interviews with teachers (primary, secondary and university)
during a series of Scratch workshops, Bustillo and Garaizar (2014) suggest that often students
and teachers “have a limited, immediate, and concrete vision of using Scratch (e.g. a step-by-
step guide to program a video game during a semester), instead of realizing the cross-curricular
potential of computational thinking”. They advocate a set of best practices, learning guides and
curriculum models to help teachers and students encounter the richness of the pool of ideas
embedded within Scratch. We concur but would go further: teachers need to appreciate the core
goals of the programming activities, the power of computational thinking skills and the purpose
of exploiting them in mathematics.

2 The complete list of tensions include (i) tool and learning, (ii) direction and discovery, (iii) individual and group, (iv)
expert and novice, and (v) actual and aspirational.

EuroLogo 2007 header – do not use it, it will be added by us

do NOT use any Footer – it will be added by us later

Tension between direction and discovery
Much research in this field has focused on extra-curricular activities that were either voluntary or
involved specially selected students, with rather few studies in naturalistic classroom settings
(Lye & Koh 2014). Israel et al. (2015) also note the lack of research examining how teachers
implement school-wide computing initiatives at the elementary level and particularly highlight this
as the case for diverse students (in terms of background and including those affected by poverty
or disability). Bers et al. (2014) claim that one key factor in the successful implementation of a
programming-based curriculum is to understand how to support individual teachers’ needs,
especially in terms of curriculum modifications, classroom management alternatives and forms
of adult support. Furthermore one failure with early programming initiatives was a neglect to
design explorations that linked to young learner’s interests or experiences (Resnick et al. 2009).

Defining the role of the teacher and the details of the curriculum design also present a
challenging dilemma that needs to be addressed. This was framed as the ‘play paradox’ by Noss
and Hoyles (1996): the problem of designing a learning activity in a way that allows students to
explore and construct ideas for themselves, but also ensuring that they encounter the powerful
ideas embedded within the activities; thus balancing exploration and guidance. Brennan’s
second tension (2015) resonates with this paradox: i.e. the tension between “direction (providing
resources in advance, anticipating and steering learner needs) and discovery (making resources
available when they are needed, in response to learner needs)”. We claim however that an
overarching challenge for those whose interest lies in teaching mathematics more effectively is
not only one of pedagogy, but of defining and elaborating new kinds of mathematical knowledge
that can be expressed by programming. We now turn to the SM project, which has attempted to
tackle this challenge.

The ScratchMaths project
Programming in schools has been shown to have the potential to develop higher levels of
mathematical thinking in relation to aspects of number linked to multiplicative reasoning,
mathematical abstraction including algebraic thinking as well as problem solving abilities
(Clements 2000). More recently, attention has been paid to defining computational thinking
(McMaster et al. 2010; Wing 2008), which is seen by Wing, for example, as part of a 'family' of
different aspects of mathematics thinking (Wing 2008). This relationship helps to explain why
programming and computer-based mathematical instruction have been found to have a positive
effect on both student attitudes, and on attainment in mathematics (Clements 1999). But of
course, such results depend fundamentally on the design of materials, support and
implementation. The SM project aims to maximise the benefits of programming for students'
mathematical thinking, reasoning and attainment. The overarching goal of the research is to
iteratively design and evaluate, both quantitatively and qualitatively, materials for students and
teachers that directly address the learning of computational thinking and its exploitation to
enhance mathematical engagement and attainment.

ScratchMaths is a 3-year research project involving a 2-year intervention with students aged 9-
11 years. The intervention is intended to comprise approximately 20 hours teaching time across
each of these two school years, with the first year focusing on computational thinking with an
implicit mathematical component, and the second year foregrounding explorations of key
mathematical concepts using programing tools. The intervention has been subject to cycles of
iterative design research with the final quantitative outcome measure being based on national
standardised mathematics test scores, taken by all students at the end of primary school.

Methodology

Design workshops
At the start of the project seven teachers from four London primary schools were recruited to act
as ‘design partners’ for the SM intervention. The teachers were either class teachers or had
responsibility for teaching computing for this age range, and had a variety of experience with

Header – Please leave the header blank

Footer – Please leave the footer blank

using Scratch ranging from none to reasonably experienced. The teachers attended five ‘twilight’
design workshops at the university to help them to understand the main features of Scratch as a
computational tool as well as to encourage them to work collaboratively with the project team to
design, test and evaluate potential student activities. The teachers also shared some of their
experiences of teaching computing and maths, with project team members visiting each of the
schools to observe some lessons. This design phase established that the intervention needed to
be appropriate for teachers with a range of experience in computing and in using Scratch as well
as for students of wide attainment levels and support needs3. It was apparent that the materials
needed to be clear as to ways the intervention could fit within an already full teaching schedule
through making explicit links with the existing curriculum, as well as signpost critical teaching
points and progression and suggest discussion opportunities to reinforce understanding.

The project team also conducted several intensive internal design workshops to set out a high-
level overview of the entire SM curriculum guided by existing knowledge and experience from
within the team’s prior research and the findings from the design workshops and school visits.
This overview identified the key concepts to be introduced and an overarching structure. Each
year would be structured into several modules, each with multiple investigations, and each of
which comprising a series of activities, mixing hands-on and unplugged. The activities for the
first investigation were then planned in detail so it could be trialled in the design schools.

Design research in schools
A design research approach was followed primarily to establish the suitability of materials for use
within the current primary school context and how far the teacher was able to understand and
communicate the key learning objectives of each activity as well as feel comfortable with the
content. The activities needed to be: sufficiently adaptable so as to be accessible for all students
while offering challenges for the higher attainers, and also presenting a balance between
scaffolding of concepts and space for exploration. Further the structure of the content was
modified so it could be taught in lessons of varying length and frequency. The design research
was undertaken in four design schools over a year with one school progressing through the
entire Y5 curriculum with three Y5 classes and the remaining three design schools testing a
subset of the materials with Y5 students in their schools. During the lessons in which these
materials were trialled, three researchers with a range of backgrounds, which included expertise
in computer science, mathematics teaching and primary school research, conducted
observations. This involved the researchers writing extensive field notes during these
observations and speaking with both teachers and children to gauge the appropriateness of the
different materials. After each lesson observation the researchers met to discuss what worked
well and where improvements could be made to the materials. Minor changes were agreed
amongst this sub-team, with more significant changes discussed with the wider project team.
The materials were then trialled again with a different class (or in the case of substantial
modifications the same class) to check the appropriateness of these changes.

Addressing the challenges through design
One key outcome of the curriculum design process described above was a ‘framework for
action’ (DiSessa & Cobb 2004), which we named the “5Es”4. This framework (consisting of five
unordered constructs) was clearly framed by a host of research into good practice in teaching
mathematics but also emerged from the early design workshops and was refined through the
design research in schools. It has been developed to provide guidance on the pedagogical
strategies teachers may adopt to successfully implement different aspects of the SM

3 The SM project is charged with ”narrowing the attainment gap”, which requires as many students as possible to be
successfully engaged
4 This is different from, but clearly intersects with, the BSCS 5E Instructional model, which includes five phases:
Engage, Explore, Explain, Elaborate and Evaluate, and is primarily targeted at science education (Bybee et al. 2006)

EuroLogo 2007 header – do not use it, it will be added by us

do NOT use any Footer – it will be added by us later

intervention. This framework is described in more detail below in relation to the two of the
tensions identified by Brennan.

Explore
Papert (1980) believes that children should use computers to explore their thinking processes,
suggesting with respect to Logo that the primary learning experience is about “getting to know
the Turtle, exploring what a Turtle can and cannot do”. Constructionist approaches value
learning in this way through design activities (Brennan 2015), which provide opportunities to
explore ways to deal with different constraints and ambiguity through employing skills such as
iterative thinking, problem solving and creativity. Therefore this first construct suggests the
importance of developing and supporting activities that allow learners to investigate ideas, try
things out for themselves and debug conceptual and technical errors where necessary. Part of
this endeavour is to shift students towards ‘taking control of their own learning’ and to seek out
the reasons behind different outcomes.

The activities designed around this construct addressed two of the tensions that were
highlighted by Brennan, tool and learning as well as direction and discovery. During the trials in
design schools it was noted that the children’s previous experience and knowledge of the tool
had a major influence on their approach to SM activities. Students with previous experience of
using Scratch would often use the blocks and strategies with which they were already familiar,
whereas students with no experience of Scratch were more cautious about trying things out that
they had not been explicitly told to by the teacher. Early in the SM curriculum students are
introduced to tools for exploration within the Scratch environment. For example the use of what
Blackwell (2002) describes as direct manipulation - a single action with a single visible effect.
Within the SM curriculum this term is seen as encompassing the manipulation of all objects both
physical (i.e. BeeBots) and digital, and therefore we use the term ‘direct drive’ to refer just to
digital objects. Direct drive is used to firstly explore the blocks on their own (Fig. 1 left), by
clicking them and observing the reaction, an important precursor we claim to using them to build
more complex scripts (Fig. 1 right). This gradual progression from direct drive of blocks to
planning and building behaviours built into scripts provides a structured approach to exploration
encouraged throughout the SM curriculum.

Figure 1. Example direct drive activity (left) progressing on to building simple scripts (right)

Explain
A crucial aspect of understanding ideas is being able to explain what has been learned and
articulating the reasons behind a chosen approach (using different modes of communication).
This helps clarify ideas, by expressing them explicitly as well as in answering questions from
peers. Several theorists have highlighted the cognitive benefit of generating verbal explanations
(Harel & Papert 1990). For example, Brown (1988) has shown that being encouraged to explain
and represent knowledge in multiple ways can increase motivation and levels of understanding
as well as subject mastery. In relation to mathematics, Hoyles (1985) discusses how language
can facilitate reflection and internal regulation, and how part of this process is the identification of
which parts of the mathematical idea are important and which are not. This reflection, or thinking
about one’s own thinking is a key component of the constructionist approach (Han &
Bhattacharya 2001), with the programming language itself becoming the tool “to think with”. This

Header – Please leave the header blank

Footer – Please leave the footer blank

second construct suggests the importance of incorporating reflective questions and opportunities
for discussion with peers as well whole-class interactions orchestrated by the teacher.

The activities designed around this construct seek to address the tension between the tool and
learning. Once students are familiar with the tool, it was observed that the ease of building
scripts may encourage students to create extremely long scripts which then appeared to have
status as demonstrating a lot of ‘work’! However, it is difficult to understand and predict what
these scripts would do when clicked. Another key idea of the SM curriculum is definitions, an
under-used component of Scratch but which helps to reduce complexity and aids the readability
of scripts. The SM curriculum promotes the use of definitions through the process of building a
script and then giving it a meaningful name (e.g. Fig. 2). This in turn supports students in
explaining step by step what their script is doing and what outcome they intend to happen.

Figure 2. Example activity where students are encouraged to define blocks that then help them explain
how they have drawn their houses

Envisage
It is important to have a goal in mind when building a computer program and to predict what the
outcome might be before trying it out. Papert (1980) describes the role of building computer
programs in facilitating reflection on intuitive expectations and knowledge, and highlights that the
link between the idea and the child’s intuitive knowledge is seen as key in understanding the
power of the idea (Papert 2000). However, Rader et al. (1997) found that in their work using a
children’s programming environment, children can easily create programs without “much
knowledge of the underlying program mechanisms” (as mentioned above). As often novice
programming tools can now manage much of the syntactic error handling, students are only
required to ‘debug’ when they have a clear goal, in other words it is quite straightforward to
generate an outcome but not necessarily a specific outcome decided upon in advance.
Therefore to truly understand an idea it is necessary to take time to predict the outcome before
building the program and then compare the actual outcome with this prediction. This enables the
establishment of whether the original intuition was correct or whether this knowledge needs to
be remodelled (Papert 1980). This third construct suggests a need for some learning activities to
be conducted prior to exploration with the programming tool, to provide learners with the
opportunity to consider the program goal and to predict the potential outcomes of using different
strategies. It is important this construct is balanced with explore, providing exploration
opportunities that allow discoveries to be made but also occasions to envisage the outcome first.

The activities designed around this construct intend to address the tension between the tool and
learning. Many students observed during the trial were very happy and excited with any outcome
that resulted in an attractive pattern being stamped on the screen or a fun animation being
played out, which they were able to produce without necessarily fully understanding how they
created it or even having a clear goal in what they were aiming to achieve. The SM curriculum
thus includes a series of unplugged activities that require students to work off the computer,
encouraging them to practice prediction, reflection and debugging skills before they test things
on the computer, and to reflect on how to engage with similar activities in other areas of the
curriculum (see bridgE below). It also promotes body syntoncity (Watt 1998) by encouraging
both teachers and students to envisage themselves as the sprite through activities which require
them to act out the scripts or through physical objects such as paper cut-outs and toys.

EuroLogo 2007 header – do not use it, it will be added by us

do NOT use any Footer – it will be added by us later

Exchange
Collaborating and sharing is a powerful way to learn, with constructionist approaches advocating
the development of ideas through interactions with others (Han & Bhattacharya 2001). This
allows you to ‘decentre’, while trying to see a problem from another’s perspective as well as
defend your own approach and compare it with others. Furthermore Hoyles (1985) suggests that
others’ ideas can potentially result in modifications to an individual’s thought processes,
particularly helpful in clarifying predictions or explaining ideas that are not yet fully formed.
Bruckman (1998) has also undertaken research demonstrating the cognitive, social and
psychological benefits that undertaking constructionist activities as part of an online community
can provide. However, children are still developing their collaboration skills and may need help
to work together, resolve disagreements and question one another (Hoyles 1985). Therefore the
fourth construct requires the inclusion of meaningful opportunities to share and build on others’
ideas.

The activities designed around this construct intend to address the tension between direction
and discovery. Collaborative learning offers the potential to promote less directed exploration
and discovery. During the trial in schools it was observed that pair work could encourage
discussions, requiring students to explain their strategies and discoveries to their partner. Some
teachers arranged mixed ability pairing encouraging the more able students to support less able
students by ‘teaching’ them what they had already discovered for themselves. Individual
discoveries were also observed quickly spreading around the whole class without teacher
intervention through the students monitoring what their peers were working on.

bridgE
Powerful ideas should be embedded in any well-designed constructionist activity (Bers et al.
2014), and ideas are seen as powerful partly through their connections with other disciplines,
such as mathematics (Papert 2000), and partly by virtue of the language in which they are
expressed. In order to develop these connections the ideas need to be re-contextualised and re-
built in the language of the other discipline. Therefore the final construct requires that activities
or teacher moves be suggested to make explicit links to another context (in our case school
mathematics).

The activities designed around this construct look to address the tension between the tool and
learning. In one of the classes during an activity, which required circular repeated patterns to be
stamped, students were observed calculating the value of the repeat block by dividing 360 by
any chosen value in the turn block. Sometimes this resulted in a decimal number, e.g. 5.5, which
they then inputted into the repeat block. Scratch automatically treats the input to repeat by
rounding it prior to running (as it is not possible to stamp .5), which in this case was done by
rounding up. To ensure these important mathematics learning opportunities are not overlooked
due to the behaviour of the tool, explicit links with the mathematics curriculum are made and
suggested teacher discussion starter questions are provided within the materials. The unplugged
activities are also intended to make further consolidate these links away from the computer.

Conclusion
The ScratchMaths project is still in progress and here we primarily focus on describing the
design process adopted to develop the curriculum materials. We have also provided glimpses of
the myriad of challenges in implementation. In our presentation we will provide some interim
results along with more examples to give a greater feel for the different activities and the
progression we envisage.

Acknowledgments
We would like to thank the Education Endowment Foundation for funding this work. We also
thank all of the teachers and students from our four design schools for their invaluable
contributions to the design and development of the SM intervention.

Header – Please leave the header blank

Footer – Please leave the footer blank

References
Bers, M.U. et al., 2014. Computational thinking and tinkering: Exploration of an early children
robotics curriculum. Computers & Education, 72, pp.145–157.
Blackwell, A.F., 2002. What is Programming? In 14th Workshop of the Psychology of
Programming Interest Group. pp. 204–218.
Brennan, K., 2015. Beyond Technocentrism: Supporting Constructionism in the Classroom.
Constructivist Foundations, 10(3), pp.289–296.
Brown, A.L., 1988. Motivation to learn and understand: On taking charge of one’s own learning.
Cognition and Instruction, 5, pp.311–322.
Bruckman, A., 1998. Community Support for Constructionist Learning. CSCW (Computer
Supported Collaborative Work: The Journal of Collaborative Computing), 7, pp.47–86.
Bustillo, J. & Garaizar, P., 2014. Scratching the surface of digital literacy...but do we need to go
deeper. In IEEE Frontiers in Education Conference (FIE). pp. 1–4.
Bybee, R.W. et al., 2006. The BSCS 5E instructional model: Origins and effectiveness, Colorado
Springs, CO: BSCS, 5, pp. 88-98.
Clements, D., 2000. From exercises and tasks to problems and projects unique contributions of
computers to innovation mathematics education. Journal of Mathematical Beh., 19(1), pp.9–47.
Clements, D.H., 1999. The future of educational computing research: The case of computer
programming. Information Technology in Childhood Education Annual, 1, pp.147–179.
DfE, 2013. Computing Programmes of Study: Key Stages 1 and 2, DfE. Available at:
https://www.gov.uk/government/publications/national-curriculum-in-england-computing-
programmes-of-study.
DiSessa, A.A. & Cobb, P., 2004. Ontological Innovation and the Role of Theory in Design
Experiments. Journal of the Learning Sciences, 13(1), pp.77–103.
Furber, S., 2012. Shut Down or Restart? The way forward for Computing in UK schools,
Han, S. & Bhattacharya, K., 2001. Constructionism, Learning by Design, and Project Based
Learning. In Emerging perspectives on learning, teaching, and technology.
Harel, I. & Papert, S., 1990. Software design as a learning environment. Interactive Learning
Environments, 1(1), pp.1–32.
Hoyles, C., 1985. What is the point of group discussion in mathematics? Educational studies in
mathematics, 16(2), pp.205–214.
Hoyles, C. & Noss, R., 1992. Learning Mathematics & Logo, Cambridge, MA, USA: MIT Press.
Israel, M. et al., 2015. Supporting all learners in school-wide computational thinking: A cross-
case qualitative analysis. Computers & Education, 82, pp.263–279.
Lye, S.Y. & Koh, J.H.L., 2014. Review on teaching and learning of computational thinking
through programming: What is next for K-12? Computers in Human Behavior, 41, pp.51–61.
McMaster, K., Rague, B. & Anderson, N., 2010. Integrating mathematical thinking, abstract
thinking and computational thinking. In ASEE/IEEE Frontiers in Ed. Conf. Washington, DC.
Noss, R. & Hoyles, C., 1996. Windows on mathematical meanings: Learning cultures and
computers, Springer Science & Business Media.
Papert, S., 1980. Mindstorms: Children, computers, and powerful ideas, Basic Books, Inc.
Papert, S., 1972. Teaching Children to Be Mathematicians vs. Teaching About Mathematics.
International Journal of Mathematics Education and Science Technology, 3, pp.249–262.
Papert, S., 2000. What’s the big idea? Toward a pedagogy of idea power. IBM Systems Journal,
39(3.4), pp.720–729.
Rader, C., Brand, C. & Lewis, C., 1997. Degrees of comprehension: children’s understanding of
a visual programming environment. In Proc. CHI '9. ACM, pp. 351–358.
Resnick, M. et al., 2009. Scratch: Programming for all. Comms of the ACM, 52(11), pp.60–67.
Watt, S., 1998. Syntonicity and the psychology of programming. In Proceedings of 10th Annual
Meeting of the Psychology of Programming Interest Group. pp. 75–86.
Weintrop, D. & Wilensky, U., 2015. To block or not to block, that is the question: students’
perceptions of blocks-based progrmming. In Proc. IDC '15. ACM, pp. 199–208.
Wing, J.M., 2008. Computational thinking and thinking about computing. Philos. Trans. Roy.
Soc. London Ser. A: Math., Phys. and Eng. Sci., 366(1881), pp.3717–3725.

