13 research outputs found

    Functional assays to determine the significance of two common XPC 3'UTR variants found in bladder cancer patients

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>XPC </it>is involved in the nucleotide excision repair of DNA damaged by carcinogens known to cause bladder cancer. Individuals homozygous for the variant allele of <it>XPC </it>c.1496C > T (p.Ala499Val) were shown in a large pooled analysis to have an increased bladder cancer risk, and we found two 3'UTR variants, *611T > A and c.*618A > G, to be in strong linkage disequilibrium with c.1496T. Here we determined if these two 3'UTR variants can affect mRNA stability and assessed the impact of all three variants on mRNA and protein expression.</p> <p>Methods</p> <p><it>In vitro </it>mRNA stability assays were performed and mRNA and protein expression measured both in plasmid-based assays and in lymphocytes and lymphoblastoid cell lines from bladder and breast cancer patients.</p> <p>Results</p> <p>The two 3'UTR variants were associated with reduced protein and mRNA expression in plasmid-based assays, suggesting an effect on mRNA stability and/or transcription/translation. A near-significant reduction in XPC protein expression (p = 0.058) was detected in lymphoblastoid cell lines homozygous for these alleles but no differences in mRNA stability in these lines was found or in mRNA or protein levels in lymphocytes heterozygous for these alleles.</p> <p>Conclusion</p> <p>The two 3'UTR variants may be the variants underlying the association of c.1496C > T and bladder cancer risk acting via a mechanism modulating protein expression.</p

    In vitro functional effects of XPC gene rare variants from bladder cancer patients

    Get PDF
    The XPC gene is involved in repair of bulky DNA adducts formed by carcinogenic metabolites and oxidative DNA damage, both known bladder cancer risk factors. Single nucleotide polymorphisms (SNPs) in XPC have been associated with increased bladder cancer risk. Recently, rarer genetic variants have been identified but it is difficult to ascertain which are of functional importance. During a mutation screen of XPC in DNA from 33 bladder tumour samples and matched blood samples, we identified five novel variants in the patients’ germ line DNA. In a case–control study of 771 bladder cancer cases and 800 controls, c.905T>C (Phe302Ser), c.1177C>T (Arg393Trp), c.*156G>A [3′ untranslated region (UTR)] and c.2251-37C>A (in an intronic C>G SNP site) were found to be rare variants, with a combined odds ratio of 3.1 (95% confidence interval 1.0–9.8, P = 0.048) for carriage of one variant. The fifth variant was a 2% minor allele frequency SNP not associated with bladder cancer. The two non-synonymous coding variants were predicted to have functional effects using analytical algorithms; a reduced recruitment of GFP-tagged XPC plasmids containing either c.905T>C or c.1177C>T to sites of 408 nm wavelength laser-induced oxidative DNA damage was found in vitro. c.*156G>A appeared to be associated with reduced messenger RNA stability in an in vitro plasmid-based assay. Although the laser microbeam assay is relevant to a range of DNA repair genes, our 3′ UTR assay based on Green fluorescent protein(GFP) has widespread applicability and could be used to assess any gene. These assays may be useful in determining which rare variants are functional, prior to large genotyping efforts

    Convalescent plasma in patients admitted to hospital with COVID-19 (RECOVERY): a randomised controlled, open-label, platform trial

    Get PDF
    SummaryBackground Azithromycin has been proposed as a treatment for COVID-19 on the basis of its immunomodulatoryactions. We aimed to evaluate the safety and efficacy of azithromycin in patients admitted to hospital with COVID-19.Methods In this randomised, controlled, open-label, adaptive platform trial (Randomised Evaluation of COVID-19Therapy [RECOVERY]), several possible treatments were compared with usual care in patients admitted to hospitalwith COVID-19 in the UK. The trial is underway at 176 hospitals in the UK. Eligible and consenting patients wererandomly allocated to either usual standard of care alone or usual standard of care plus azithromycin 500 mg once perday by mouth or intravenously for 10 days or until discharge (or allocation to one of the other RECOVERY treatmentgroups). Patients were assigned via web-based simple (unstratified) randomisation with allocation concealment andwere twice as likely to be randomly assigned to usual care than to any of the active treatment groups. Participants andlocal study staff were not masked to the allocated treatment, but all others involved in the trial were masked to theoutcome data during the trial. The primary outcome was 28-day all-cause mortality, assessed in the intention-to-treatpopulation. The trial is registered with ISRCTN, 50189673, and ClinicalTrials.gov, NCT04381936.Findings Between April 7 and Nov 27, 2020, of 16 442 patients enrolled in the RECOVERY trial, 9433 (57%) wereeligible and 7763 were included in the assessment of azithromycin. The mean age of these study participants was65·3 years (SD 15·7) and approximately a third were women (2944 [38%] of 7763). 2582 patients were randomlyallocated to receive azithromycin and 5181 patients were randomly allocated to usual care alone. Overall,561 (22%) patients allocated to azithromycin and 1162 (22%) patients allocated to usual care died within 28 days(rate ratio 0·97, 95% CI 0·87–1·07; p=0·50). No significant difference was seen in duration of hospital stay (median10 days [IQR 5 to >28] vs 11 days [5 to >28]) or the proportion of patients discharged from hospital alive within 28 days(rate ratio 1·04, 95% CI 0·98–1·10; p=0·19). Among those not on invasive mechanical ventilation at baseline, nosignificant difference was seen in the proportion meeting the composite endpoint of invasive mechanical ventilationor death (risk ratio 0·95, 95% CI 0·87–1·03; p=0·24).Interpretation In patients admitted to hospital with COVID-19, azithromycin did not improve survival or otherprespecified clinical outcomes. Azithromycin use in patients admitted to hospital with COVID-19 should be restrictedto patients in whom there is a clear antimicrobial indication

    Development of a rapid, small-scale DNA repair assay for use on clinical samples

    No full text
    Double-strand breaks (DSBs) are the most lethal form of DNA damage. They can be repaired by one of two pathways, homologous recombination and non-homologous end joining (NHEJ). A NHEJ assay has previously been reported which measures joining using cell-free extracts and a linearised plasmid as DNA substrate. This assay was designed for 3 × 10(9) cells grown in vitro and utilised radioactively labelled substrate. We have scaled down the method to use smaller cell numbers in a variety of cell lines. Altering the cellular extraction procedure decreased background DNA contamination. The cleaner preparations allowed us to use SYBR Green I staining to identify joined products, which was as sensitive as (32)P-end-labelled DNA. NHEJ was found in established tumour cell lines from different originating tissues, though actual levels and fidelity of repair differed. This method also allowed end joining to be assessed in clinical specimens (human blood, brain and bladder tumours) within 24 h of receiving samples. The application of this method will allow investigation of the role of DSB DNA repair pathways in human tumours

    DNA double strand break repair in human bladder cancer is error prone and involves microhomology-associated end-joining

    No full text
    In human cells DNA double strand breaks (DSBs) can be repaired by the non-homologous end-joining (NHEJ) pathway. In a background of NHEJ deficiency, DSBs with mismatched ends can be joined by an error-prone mechanism involving joining between regions of nucleotide microhomology. The majority of joins formed from a DSB with partially incompatible 3′ overhangs by cell-free extracts from human glioblastoma (MO59K) and urothelial (NHU) cell lines were accurate and produced by the overlap/fill-in of mismatched termini by NHEJ. However, repair of DSBs by extracts using tissue from four high-grade bladder carcinomas resulted in no accurate join formation. Junctions were formed by the non-random deletion of terminal nucleotides and showed a preference for annealing at a microhomology of 8 nt buried within the DNA substrate; this process was not dependent on functional Ku70, DNA-PK or XRCC4. Junctions were repaired in the same manner in MO59K extracts in which accurate NHEJ was inactivated by inhibition of Ku70 or DNA-PK(cs). These data indicate that bladder tumour extracts are unable to perform accurate NHEJ such that error-prone joining predominates. Therefore, in high-grade tumours mismatched DSBs are repaired by a highly mutagenic, microhomology-mediated, alternative end-joining pathway, a process that may contribute to genomic instability observed in bladder cancer

    MRE11 expression is predictive of cause-specific survival following radical radiotherapy for muscle-invasive bladder cancer

    No full text
    Radical radiotherapy and surgery achieve similar cure rates in muscle invasive bladder cancer, but the choice of which treatment would be most beneficial cannot currently be predicted for individual patients. The primary aim of this study was to assess whether expression of any of a panel of DNA damage signalling proteins in tumour samples taken before irradiation could be used as a predictive marker of radiotherapy response, or rather was prognostic. Protein expression of MRE11, RAD50, NBS1, ATM and H2AX was studied by immunohistochemistry in pre-treatment tumour specimens from two cohorts of bladder cancer patients (validation cohort prospectively acquired) treated with radical radiotherapy and one cohort of cystectomy patients. In the radiotherapy test cohort (n=86), low tumour MRE11 expression was associated with worse cancer-specific survival compared with high expression (43.1% versus 68.7% 3 year cause-specific survival, p=0.012) by Kaplan Meier analysis. This was confirmed in the radiotherapy validation cohort (n=93) (43.0% versus 71.2%, p=0.020). However, in the cystectomy cohort (n=88), MRE11 expression was not associated with cancer-specific survival, commensurate with MRE11 being a predictive marker. High MRE11 expression in the combined radiotherapy cohort had a significantly better cancer-specific survival compared with the high expression cystectomy cohort (69.9% vs 53.8% 3 year cause-specific survival, p=0.021). In this validated immunohistochemistry study, MRE11 protein expression was demonstrated and confirmed as a predictive factor associated with survival following bladder cancer radiotherapy, justifying its inclusion in subsequent trial design. MRE11 expression may ultimately allow patient selection for radiotherapy or cystectomy, thus improving overall cure rates

    Structure-based design of 2-arylamino-4-cyclohexylmethyl-5-nitroso-6-aminopyrimidine inhibitors of cyclin-dependent kinases 1 and 2

    No full text
    A series of O4-cyclohexylmethyl-5-nitroso-6-aminopyrimidines bearing 2-arylamino substituents was synthesised and evaluated for CDK1 and CDK2 inhibitory activity. Consistent with analogous studies with O6-cyclohexylmethylpurines, 2-arylaminopyrimidines with a sulfonamide or carboxamide group at the 40-position were potent inhibitors, with IC50 values against CDK2 of 1.1±10.3 and 34±8 nM, respectively. The crystal structure of the 40-carboxamide derivative, in complex with phospho-Thr160 CDK2/cyclin A, confirmed the expected binding mode of the inhibitor, and revealed an additional interaction between the carboxamide function and an aspartate residue
    corecore