178 research outputs found

    On Hoeffding's inequalities

    Full text link
    In a celebrated work by Hoeffding [J. Amer. Statist. Assoc. 58 (1963) 13-30], several inequalities for tail probabilities of sums M_n=X_1+... +X_n of bounded independent random variables X_j were proved. These inequalities had a considerable impact on the development of probability and statistics, and remained unimproved until 1995 when Talagrand [Inst. Hautes Etudes Sci. Publ. Math. 81 (1995a) 73-205] inserted certain missing factors in the bounds of two theorems. By similar factors, a third theorem was refined by Pinelis [Progress in Probability 43 (1998) 257-314] and refined (and extended) by me. In this article, I introduce a new type of inequality. Namely, I show that P{M_n\geq x}\leq cP{S_n\geq x}, where c is an absolute constant and S_n=\epsilon_1+... +\epsilon_n is a sum of independent identically distributed Bernoulli random variables (a random variable is called Bernoulli if it assumes at most two values). The inequality holds for those x\in R where the survival function x\mapsto P{S_n\geq x} has a jump down. For the remaining x the inequality still holds provided that the function between the adjacent jump points is interpolated linearly or \log-linearly. If it is necessary, to estimate P{S_n\geq x} special bounds can be used for binomial probabilities. The results extend to martingales with bounded differences. It is apparent that Theorem 1.1 of this article is the most important.Comment: Published by the Institute of Mathematical Statistics (http://www.imstat.org) in the Annals of Probability (http://www.imstat.org/aop/) at http://dx.doi.org/10.1214/00911790400000036

    Lattice point problems and distribution of values of quadratic forms

    Full text link
    For d-dimensional irrational ellipsoids E with d >= 9 we show that the number of lattice points in rE is approximated by the volume of rE, as r tends to infinity, up to an error of order o(r^{d-2}). The estimate refines an earlier authors' bound of order O(r^{d-2}) which holds for arbitrary ellipsoids, and is optimal for rational ellipsoids. As an application we prove a conjecture of Davenport and Lewis that the gaps between successive values, say s<n(s), s,n(s) in Q[Z^d], of a positive definite irrational quadratic form Q[x], x in R^d, are shrinking, i.e., that n(s) - s -> 0 as s -> \infty, for d >= 9. For comparison note that sup_s (n(s)-s) 0, for rational Q[x] and d>= 5. As a corollary we derive Oppenheim's conjecture for indefinite irrational quadratic forms, i.e., the set Q[Z^d] is dense in R, for d >= 9, which was proved for d >= 3 by G. Margulis in 1986 using other methods. Finally, we provide explicit bounds for errors in terms of certain characteristics of trigonometric sums.Comment: 51 pages, published versio

    An Edgeworth expansion for finite population L-statistics

    Full text link
    In this paper, we consider the one-term Edgeworth expansion for finite population L-statistics. We provide an explicit formula for the Edgeworth correction term and give sufficient conditions for the validity of the expansion which are expressed in terms of the weight function that defines the statistics and moment conditions.Comment: 14 pages. Minor revisions. Some explanatory comments and a numerical example were added. Lith. Math. J. (to appear

    Exponential inequalities for martingales and asymptotic properties of the free energy of directed polymers in random environment

    Get PDF
    The objective of the present paper is to establish exponential large deviation inequalities, and to use them to show exponential concentration inequalities for the free energy of a polymer in general random environment, its rate of convergence, and an expression of its limit value in terms of those of some multiplicative cascades.Comment: 25 page

    Optimal Uncertainty Quantification

    Get PDF
    We propose a rigorous framework for Uncertainty Quantification (UQ) in which the UQ objectives and the assumptions/information set are brought to the forefront. This framework, which we call \emph{Optimal Uncertainty Quantification} (OUQ), is based on the observation that, given a set of assumptions and information about the problem, there exist optimal bounds on uncertainties: these are obtained as values of well-defined optimization problems corresponding to extremizing probabilities of failure, or of deviations, subject to the constraints imposed by the scenarios compatible with the assumptions and information. In particular, this framework does not implicitly impose inappropriate assumptions, nor does it repudiate relevant information. Although OUQ optimization problems are extremely large, we show that under general conditions they have finite-dimensional reductions. As an application, we develop \emph{Optimal Concentration Inequalities} (OCI) of Hoeffding and McDiarmid type. Surprisingly, these results show that uncertainties in input parameters, which propagate to output uncertainties in the classical sensitivity analysis paradigm, may fail to do so if the transfer functions (or probability distributions) are imperfectly known. We show how, for hierarchical structures, this phenomenon may lead to the non-propagation of uncertainties or information across scales. In addition, a general algorithmic framework is developed for OUQ and is tested on the Caltech surrogate model for hypervelocity impact and on the seismic safety assessment of truss structures, suggesting the feasibility of the framework for important complex systems. The introduction of this paper provides both an overview of the paper and a self-contained mini-tutorial about basic concepts and issues of UQ.Comment: 90 pages. Accepted for publication in SIAM Review (Expository Research Papers). See SIAM Review for higher quality figure

    On the error term in Weyl's law for the Heisenberg manifolds (II)

    Full text link
    In this paper we study the mean square of the error term in the Weyl's law of an irrational (2l+1)(2l+1)-dimensional Heisenberg manifold . An asymptotic formula is established

    Towards Machine Wald

    Get PDF
    The past century has seen a steady increase in the need of estimating and predicting complex systems and making (possibly critical) decisions with limited information. Although computers have made possible the numerical evaluation of sophisticated statistical models, these models are still designed \emph{by humans} because there is currently no known recipe or algorithm for dividing the design of a statistical model into a sequence of arithmetic operations. Indeed enabling computers to \emph{think} as \emph{humans} have the ability to do when faced with uncertainty is challenging in several major ways: (1) Finding optimal statistical models remains to be formulated as a well posed problem when information on the system of interest is incomplete and comes in the form of a complex combination of sample data, partial knowledge of constitutive relations and a limited description of the distribution of input random variables. (2) The space of admissible scenarios along with the space of relevant information, assumptions, and/or beliefs, tend to be infinite dimensional, whereas calculus on a computer is necessarily discrete and finite. With this purpose, this paper explores the foundations of a rigorous framework for the scientific computation of optimal statistical estimators/models and reviews their connections with Decision Theory, Machine Learning, Bayesian Inference, Stochastic Optimization, Robust Optimization, Optimal Uncertainty Quantification and Information Based Complexity.Comment: 37 page

    An improvement of the Berry--Esseen inequality with applications to Poisson and mixed Poisson random sums

    Full text link
    By a modification of the method that was applied in (Korolev and Shevtsova, 2009), here the inequalities ρ(Fn,Φ)0.335789(β3+0.425)n\rho(F_n,\Phi)\le\frac{0.335789(\beta^3+0.425)}{\sqrt{n}} and ρ(Fn,Φ)0.3051(β3+1)n\rho(F_n,\Phi)\le \frac{0.3051(\beta^3+1)}{\sqrt{n}} are proved for the uniform distance ρ(Fn,Φ)\rho(F_n,\Phi) between the standard normal distribution function Φ\Phi and the distribution function FnF_n of the normalized sum of an arbitrary number n1n\ge1 of independent identically distributed random variables with zero mean, unit variance and finite third absolute moment β3\beta^3. The first of these inequalities sharpens the best known version of the classical Berry--Esseen inequality since 0.335789(β3+0.425)0.335789(1+0.425)β3<0.4785β30.335789(\beta^3+0.425)\le0.335789(1+0.425)\beta^3<0.4785\beta^3 by virtue of the condition β31\beta^3\ge1, and 0.4785 is the best known upper estimate of the absolute constant in the classical Berry--Esseen inequality. The second inequality is applied to lowering the upper estimate of the absolute constant in the analog of the Berry--Esseen inequality for Poisson random sums to 0.3051 which is strictly less than the least possible value of the absolute constant in the classical Berry--Esseen inequality. As a corollary, the estimates of the rate of convergence in limit theorems for compound mixed Poisson distributions are refined.Comment: 33 page
    corecore