902 research outputs found
Interior error estimate for periodic homogenization
In a previous article about the homogenization of the classical problem of
diff usion in a bounded domain with su ciently smooth boundary we proved that
the error is of order . Now, for an open set with su ciently
smooth boundary and homogeneous Dirichlet or Neuman limits conditions
we show that in any open set strongly included in the error is of order
. If the open set is of polygonal (n=2) or
polyhedral (n=3) boundary we also give the global and interrior error
estimates
Advectional enhancement of eddy diffusivity under parametric disorder
Frozen parametric disorder can lead to appearance of sets of localized
convective currents in an otherwise stable (quiescent) fluid layer heated from
below. These currents significantly influence the transport of an admixture (or
any other passive scalar) along the layer. When the molecular diffusivity of
the admixture is small in comparison to the thermal one, which is quite typical
in nature, disorder can enhance the effective (eddy) diffusivity by several
orders of magnitude in comparison to the molecular diffusivity. In this paper
we study the effect of an imposed longitudinal advection on delocalization of
convective currents, both numerically and analytically; and report subsequent
drastic boost of the effective diffusivity for weak advection.Comment: 14 pages, 6 figures, for Topical Issue of Physica Scripta "2nd Intl.
Conf. on Turbulent Mixing and Beyond
Diffusion of a passive scalar by convective flows under parametric disorder
We study transport of a weakly diffusive pollutant (a passive scalar) by
thermoconvective flow in a fluid-saturated horizontal porous layer heated from
below under frozen parametric disorder. In the presence of disorder (random
frozen inhomogeneities of the heating or of macroscopic properties of the
porous matrix), spatially localized flow patterns appear below the convective
instability threshold of the system without disorder. Thermoconvective flows
crucially effect the transport of a pollutant along the layer, especially when
its molecular diffusion is weak. The effective (or eddy) diffusivity also
allows to observe the transition from a set of localized currents to an almost
everywhere intense "global" flow. We present results of numerical calculation
of the effective diffusivity and discuss them in the context of localization of
fluid currents and the transition to a "global" flow. Our numerical findings
are in a good agreement with the analytical theory we develop for the limit of
a small molecular diffusivity and sparse domains of localized currents. Though
the results are obtained for a specific physical system, they are relevant for
a broad variety of fluid dynamical systems.Comment: 12 pages, 4 figures, the revised version of the paper for J. Stat.
Mech. (Special issue for proceedings of 5th Intl. Conf. on Unsolved Problems
on Noise and Fluctuations in Physics, Biology & High Technology, Lyon
(France), June 2-6, 2008
Homogenization of Maxwell's equations in periodic composites
We consider the problem of homogenizing the Maxwell equations for periodic
composites. The analysis is based on Bloch-Floquet theory. We calculate
explicitly the reflection coefficient for a half-space, and derive and
implement a computationally-efficient continued-fraction expansion for the
effective permittivity. Our results are illustrated by numerical computations
for the case of two-dimensional systems. The homogenization theory of this
paper is designed to predict various physically-measurable quantities rather
than to simply approximate certain coefficients in a PDE.Comment: Significantly expanded compared to v1. Accepted to Phys.Rev.E. Some
color figures in this preprint may be easier to read because here we utilize
solid color lines, which are indistinguishable in black-and-white printin
On the terminal velocity of sedimenting particles in a flowing fluid
The influence of an underlying carrier flow on the terminal velocity of
sedimenting particles is investigated both analytically and numerically. Our
theoretical framework works for a general class of (laminar or turbulent)
velocity fields and, by means of an ordinary perturbation expansion at small
Stokes number, leads to closed partial differential equations (PDE) whose
solutions contain all relevant information on the sedimentation process. The
set of PDE's are solved by means of direct numerical simulations for a class of
2D cellular flows (static and time dependent) and the resulting phenomenology
is analysed and discussed.Comment: 13 pages, 2 figures, submitted to JP
A functional non-central limit theorem for jump-diffusions with periodic coefficients driven by stable Levy-noise
We prove a functional non-central limit theorem for jump-diffusions with
periodic coefficients driven by strictly stable Levy-processes with stability
index bigger than one. The limit process turns out to be a strictly stable Levy
process with an averaged jump-measure. Unlike in the situation where the
diffusion is driven by Brownian motion, there is no drift related enhancement
of diffusivity.Comment: Accepted to Journal of Theoretical Probabilit
Convergence of the Generalized Volume Averaging Method on a Convection-Diffusion Problem: A Spectral Perspective
A mixed formulation is proposed and analyzed mathematically for coupled convection-diffusion in heterogeneous medias. Transfer in solid parts driven by pure diffusion is coupled
with convection-diffusion transfer in fluid parts. This study is carried out for translation-invariant geometries (general infinite cylinders) and unidirectional flows. This formulation brings to the fore a new convection-diffusion operator, the properties of which are mathematically studied: its symmetry is first shown using a suitable scalar product. It is proved to be self-adjoint with compact
resolvent on a simple Hilbert space. Its spectrum is characterized as being composed of a double set of eigenvalues: one converging towards −∞ and the other towards +∞, thus resulting in a nonsectorial operator. The decomposition of the convection-diffusion problem into a generalized eigenvalue problem permits the reduction of the original three-dimensional problem into a two-dimensional one. Despite the operator being nonsectorial, a complete solution on the infinite cylinder, associated to a step change of the wall temperature at the origin, is exhibited with the help of the operator’s two sets of eigenvalues/eigenfunctions. On the computational point of view, a mixed variational formulation is naturally associated to the eigenvalue problem. Numerical illustrations are provided for axisymmetrical situations, the convergence of which is found to be consistent with the numerical discretization
Coexisting ordinary elasticity and superfluidity in a model of defect-free supersolid
We present the mechanics of a model of supersolid in the frame of the
Gross-Pitaevskii equation at that do not require defects nor vacancies.
A set of coupled nonlinear partial differential equations plus boundary
conditions is derived. The mechanical equilibrium is studied under external
constrains as steady rotation or external stress. Our model displays a
paradoxical behavior: the existence of a non classical rotational inertia
fraction in the limit of small rotation speed and no superflow under small (but
finite) stress nor external force. The only matter flow for finite stress is
due to plasticity.Comment: 6 pages, 2 figure
On weak convergence of locally periodic functions
We prove a generalization of the fact that periodic functions converge weakly
to the mean value as the oscillation increases. Some convergence questions
connected to locally periodic nonlinear boundary value problems are also
considered.Comment: arxiv version is already officia
High-frequency homogenization for periodic media
This article is available open access through the publisher’s website at the link below. Copyright @ 2010 The Royal Society.An asymptotic procedure based upon a two-scale approach is developed for wave propagation in a doubly periodic inhomogeneous medium with a characteristic length scale of microstructure far less than that of the macrostructure. In periodic media, there are frequencies for which standing waves, periodic with the period or double period of the cell, on the microscale emerge. These frequencies do not belong to the low-frequency range of validity covered by the classical homogenization theory, which motivates our use of the term ‘high-frequency homogenization’ when perturbing about these standing waves. The resulting long-wave equations are deduced only explicitly dependent upon the macroscale, with the microscale represented by integral quantities. These equations accurately reproduce the behaviour of the Bloch mode spectrum near the edges of the Brillouin zone, hence yielding an explicit way for homogenizing periodic media in the vicinity of ‘cell resonances’. The similarity of such model equations to high-frequency long wavelength asymptotics, for homogeneous acoustic and elastic waveguides, valid in the vicinities of thickness resonances is emphasized. Several illustrative examples are considered and show the efficacy of the developed techniques.NSERC (Canada) and the EPSRC
- …