33 research outputs found
A national quality assurance programme for point-of- care testing in Malawi
No abstract available
Assessing the potential of HTA to inform resource allocation decisions in low-income settings : The case of Malawi
Health technology assessment (HTA) offers a set of analytical tools to support health systems' decisions about resource allocation. Although there is increasing interest in these tools across the world, including in some middle-income countries, they remain rarely used in low-income countries (LICs). In general, the focus of HTA is narrow, mostly limited to assessments of efficacy and cost-effectiveness. However, the principles of HTA can be used to support a broader series of decisions regarding new health technologies. We examine the potential for this broad use of HTA in LICs, with a focus on Malawi. We develop a framework to classify the main decisions on health technologies within health systems. The framework covers decisions on identifying and prioritizing technologies for detailed assessment, deciding whether to adopt an intervention, assessing alternative investments for implementation and scale-up, and undertaking further research activities. We consider the relevance of the framework to policymakers in Malawi and we use two health technologies as examples to investigate the main barriers and enablers to the use of HTA methods. Although the scarcity of local data, expertise, and other resources could risk limiting the operationalisation of HTA in LICs, we argue that even in highly resource constrained health systems, such as in Malawi, the use of HTA to support a broad range of decisions is feasible and desirable
Urine selenium concentration is a useful biomarker for assessing population level selenium status
Plasma selenium (Se) concentration is an established population level biomarker of Se status, especially in Se-deficient populations. Previously observed correlations between dietary Se intake and urinary Se excretion suggest that urine Se concentration is also a potentially viable biomarker of Se status. However, there are only limited data on urine Se concentration among Se-deficient populations. Here, we test if urine is a viable biomarker for assessing Se status among a large sample of women and children in Malawi, most of whom are likely to be Se-deficient based on plasma Se status. Casual (spot) urine samples (n = 1406) were collected from a nationally representative sample of women of reproductive age (WRA, n =741) and school aged children (SAC, n=665) across Malawi as part of the 2015/16 Demographic and Health Survey. Selenium concentration in urine was determined using inductively coupled plasma mass spectrometry (ICP-MS). Urinary dilution corrections for specific gravity, osmolality, and creatinine were applied to adjust for hydration status. Plasma Se status had been measured for the same survey participants. There was between-cluster variation in urine Se concentration that corresponded with variation in plasma Se concentration, but not between households within a cluster, or between individuals within a household. Corrected urine Se concentrations explained more of the between-cluster variation in plasma Se concentration than uncorrected data. These results provide new evidence that urine may be used in the surveillance of Se status at the population level in some groups. This could be a cost-effective option if urine samples are already being collected for other assessments, such as for iodine status analysis as in the Malawi and other national Demographic and Health Surveys
Dietary mineral supplies in Africa
Dietary micronutrient deficiencies (MNDs) are widespread, yet their prevalence can be difficult to assess. Here, we estimate MND risks due to inadequate intakes for seven minerals in Africa using food supply and composition data, and consider the potential of food-based and agricultural interventions. Food Balance Sheets (FBSs) for 46 countries were integrated with food composition data to estimate per capita supply of calcium (Ca), copper (Cu), iron (Fe), iodine (I), magnesium (Mg), selenium (Se) and zinc (Zn), and also phytate. Deficiency risks were quantified using an estimated average requirement (EAR) ‘cut-point’ approach. Deficiency risks are highest for Ca (54% of the population), followed by Zn (40%), Se (28%) and I (19%, after accounting for iodized salt consumption). The risk of Cu (1%) and Mg (<1%) deficiency are low. Deficiency risks are generally lower in the north and west of Africa. Multiple MND risks are high in many countries. The population-weighted mean phytate supply is 2770 mg capita−1 day−1. Deficiency risks for Fe are lower than expected (5%). However, ‘cut-point’ approaches for Fe are sensitive to assumptions regarding requirements; e.g. estimates of Fe deficiency risks are 43% under very low bioavailability scenarios consistent with high-phytate, low-animal protein diets. Fertilization and breeding strategies could greatly reduce certain MNDs. For example, meeting HarvestPlus breeding targets for Zn would reduce dietary Zn deficiency risk by 90% based on supply data. Dietary diversification or direct fortification is likely to be needed to address Ca deficiency risks
The risk of selenium deficiency in Malawi is large and varies over multiple spatial scales
Selenium (Se) is an essential human micronutrient. Deficiency of Se decreases the activity of selenoproteins and can compromise immune and thyroid function and cognitive development, and increase risks from non-communicable diseases. The prevalence of Se deficiency is unknown in many countries, especially in sub-Saharan Africa (SSA). Here we report that the risk of Se deficiency in Malawi is large among a nationally representative population of 2,761 people. For example, 62.5% and 29.6% of women of reproductive age (WRA, n = 802) had plasma Se concentrations below the thresholds for the optimal activity of the selenoproteins glutathione peroxidase 3 (GPx3
The risk of selenium deficiency in Malawi is large and varies over multiple spatial scales
Selenium (Se) is an essential human micronutrient. Deficiency of Se decreases the activity of selenoproteins and can compromise immune and thyroid function and cognitive development, and increase risks from non-communicable diseases. The prevalence of Se deficiency is unknown in many countries, especially in sub-Saharan Africa (SSA). Here we report that the risk of Se deficiency in Malawi is large among a nationally representative population of 2,761 people. For example, 62.5% and 29.6% of women of reproductive age (WRA, n = 802) had plasma Se concentrations below the thresholds for the optimal activity of the selenoproteins glutathione peroxidase 3 (GPx3; <86.9 ng mL−1) and iodothyronine deiodinase (IDI; <64.8 ng mL−1), respectively. This is the first nationally representative evidence of widespread Se deficiency in SSA. Geostatistical modelling shows that Se deficiency risks are influenced by soil type, and also by proximity to Lake Malawi where more fish is likely to be consumed. Selenium deficiency should be quantified more widely in existing national micronutrient surveillance programmes in SSA given the marginal additional cost this would incur
Omicron B.1.1.529 variant infections associated with severe disease are uncommon in a COVID-19 under-vaccinated, high SARS-CoV-2 seroprevalence population in Malawi.
BACKGROUND: The B.1.1.529 (Omicron) variant of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has resulted in the fourth COVID-19 pandemic wave across the southern African region, including Malawi. The seroprevalence of SARS-CoV-2 antibodies and their association with epidemiological trends of hospitalisations and deaths are needed to aid locally relevant public health policy decisions. METHODS: We conducted a population-based serosurvey from December 27, 2021 to January 17, 2022, in 7 districts across Malawi to determine the seroprevalence of SARS-CoV-2 antibodies. Serum samples were tested for antibodies against SARS-CoV-2 receptor binding domain using WANTAI SARS-CoV-2 Receptor Binding Domain total antibody commercial enzyme-linked immunosorbent assay (ELISA). We also evaluated COVID-19 epidemiologic trends in Malawi, including cases, hospitalisations and deaths from April 1, 2021 through April 30, 2022, collected using the routine national COVID-19 reporting system. A multivariable logistic regression model was developed to investigate the factors associated with SARS-CoV-2 seropositivity. FINDINGS: Serum samples were analysed from 4619 participants (57% female; 60% aged 18-50 years), of whom 878/3794 (23%) of vaccine eligible adults had received a single dose of any COVID-19 vaccine. The overall assay-adjusted seroprevalence was 83.7% (95% confidence interval (CI), 79.3%-93.4%). Seroprevalence was lowest among children <13 years of age (66%) and highest among adults 18-50 years of age (82%). Seroprevalence was higher among vaccinated compared to unvaccinated participants (1 dose, 94% vs. 77%, adjusted odds ratio 4.89 [95% CI, 3.43-7.22]; 2 doses, 97% vs. 77%, aOR 6.62 [95% CI, 4.14-11.3]). Urban residents were more likely to be seropositive than those from rural settings (91% vs. 78%, aOR 2.76 [95% CI, 2.16-3.55]). There was at least a two-fold reduction in the proportion of hospitalisations and deaths among the reported cases in the fourth wave compared to the third wave (hospitalisations, 10.7% (95% CI, 10.2-11.3) vs. 4.86% (95% CI, 4.52-5.23), p < 0.0001; deaths, 3.48% (95% CI, 3.18-3.81) vs. 1.15% (95% CI, 1.00-1.34), p < 0.0001). INTERPRETATION: We report reduction in proportion of hospitalisations and deaths from SARS-CoV-2 infections during the Omicron variant dominated wave in Malawi, in the context of high SARS-CoV-2 seroprevalence and low COVID-19 vaccination coverage. These findings suggest that COVID-19 vaccination policy in high seroprevalence settings may need to be amended from mass campaigns to targeted vaccination of reported at-risk populations. FUNDING: Supported by the Bill and Melinda Gates Foundation (INV-039481)
Optimization of a Low Cost and Broadly Sensitive Genotyping Assay for HIV-1 Drug Resistance Surveillance and Monitoring in Resource-Limited Settings
Commercially available HIV-1 drug resistance (HIVDR) genotyping assays are expensive and have limitations in detecting non-B subtypes and circulating recombinant forms that are co-circulating in resource-limited settings (RLS). This study aimed to optimize a low cost and broadly sensitive in-house assay in detecting HIVDR mutations in the protease (PR) and reverse transcriptase (RT) regions of pol gene. The overall plasma genotyping sensitivity was 95.8% (N = 96). Compared to the original in-house assay and two commercially available genotyping systems, TRUGENE® and ViroSeq®, the optimized in-house assay showed a nucleotide sequence concordance of 99.3%, 99.6% and 99.1%, respectively. The optimized in-house assay was more sensitive in detecting mixture bases than the original in-house (N = 87, P<0.001) and TRUGENE® and ViroSeq® assays. When the optimized in-house assay was applied to genotype samples collected for HIVDR surveys (N = 230), all 72 (100%) plasma and 69 (95.8%) of the matched dried blood spots (DBS) in the Vietnam transmitted HIVDR survey were genotyped and nucleotide sequence concordance was 98.8%; Testing of treatment-experienced patient plasmas with viral load (VL) ≥ and <3 log10 copies/ml from the Nigeria and Malawi surveys yielded 100% (N = 46) and 78.6% (N = 14) genotyping rates, respectively. Furthermore, all 18 matched DBS stored at room temperature from the Nigeria survey were genotyped. Phylogenetic analysis of the 236 sequences revealed that 43.6% were CRF01_AE, 25.9% subtype C, 13.1% CRF02_AG, 5.1% subtype G, 4.2% subtype B, 2.5% subtype A, 2.1% each subtype F and unclassifiable, 0.4% each CRF06_CPX, CRF07_BC and CRF09_CPX