671 research outputs found

    Interaction of Sodium, Sulfur, and Silica during Coal Combustion

    Get PDF
    The Interaction of Sodium, Sulfur, and Silica at Conditions Typical in a Pulverized Coal Furnace Was Investigated by using Both Model Mixtures and a Synthetic Coal. the Model Mixtures Consisted of Selected Inorganic Constituents that Were Well Mixed in Proportions Typically Found in Low-Rank Coal. the Synthetic Coal Consisted of a Furfuryl Alcohol Polymer with Appropriate Amounts of Sodium, Sulfur, and Silica to Duplicate the Characteristics of Low-Rank Coal. the Model Mixtures and Synthetic Coal Were Burned in a Laminar Flow (Drop-Tube) Furnace at 900, 1100, 1300, and 1500 °C and Residence Times of 0.1,0.5,1.5, and 2.4 S. the Resulting Char and Fly Ash Particles Were Quickly Quenched, Collected, and Analyzed with a Scanning Electron Microscope (SEM) to Determine Size and Composition. Results Indicated that the Formation of Sodium Silicates is Favored by Higher Temperatures and Longer Residence Times. Thermodynamic Calculations and the Model Mixture Studies Indicated above 1100 °C There is Little Interference in the Formation of Sodium Silicates by Sodium Sulfates. in the Synthetic Coal Studies, Sodium Sulfate Particles Were Detected on the Surface of the Larger Sodium Silicate Fly Ash Particles Formed at Lower Temperatures. the Size and Prevalence of the Sodium Sulfate Particles Decreased as Temperature Was Increased. Fly Ash Particle Formation Was Characterized by Fragmentation Followed by Coalescence. Fragmentation Was More Prevalent at Higher Temperatures and Smaller Fly Ash Particles Were Formed. Larger Particles Were Formed at Lower Temperatures, Indicating More Complete Coalescence with Some Cenosphere Formation. © 1991, American Chemical Society. All Rights Reserved

    Leaching Behavior of Rare Earth Elements in Fort Union Lignite Coals of North America

    Get PDF
    Fort Union lignite coal samples were subjected to a series of aqueous leaching experiments to understand the extraction behavior of the rare earth elements (REE). This testing was aimed at understanding the modes of occurrence of the REE in the lignite coals, as well as to provide foundational data for development of rare earth extraction processes. In a first series of tests, a sequential leaching process was used to investigate modes of occurrence of the REE of select lignite coals. The tests involved sequential exposure to solvents consisting of water, ammonium acetate and dilute hydrochloric acid (HCl). The results indicated that water and ammonium acetate extracted very little of the REE, indicating the REE are not present as water soluble or ion-exchangeable forms. However, the data shows that a large percentage of the REE were extracted with the hydrochloric acid (80-95wt%), suggesting presence in HCl-soluble mineral forms such as carbonates, and/or presence as organic complexes. A second series of tests was performed involving single-step leaching with dilute acids and various operating parameters, including acid type, acid concentration, acid/coal contact time and coal particle size. For select samples, additional tests were performed to understand the results of leaching, including float-sink density separations and humic acid extraction. The results have shown that the majority of REE in Fort Union lignites appear to be associated weakly with the organic matrix of the coals, most likely as coordination complexes of carboxylic acid groups. The light REE and heavy REE exhibit different behaviors, however. The extractable light REE appear to have association both in acid-soluble mineral forms and as organic complexes, whereas the extractable heavy REE appear to be almost solely associated with the organics. Scandium behavior was notably different than yttrium and the lanthanides, and the data suggests the extractable content is primarily associated as acid-soluble mineral forms

    Molecular Characterization of Host-Specific Biofilm Formation in a Vertebrate Gut Symbiont

    Get PDF
    Although vertebrates harbor bacterial communities in their gastrointestinal tract whose composition is host-specific, little is known about the mechanisms by which bacterial lineages become selected. The goal of this study was to characterize the ecological processes that mediate host-specificity of the vertebrate gut symbiont Lactobacillus reuteri, and to systematically identify the bacterial factors that are involved. Experiments with monoassociated mice revealed that the ability of L. reuteri to form epithelial biofilms in the mouse forestomach is strictly dependent on the strain’s host origin. To unravel the molecular basis for this host-specific biofilm formation, we applied a combination of transcriptome analysis and comparative genomics and identified eleven genes of L. reuteri 100-23 that were predicted to play a role. We then determined expression and importance of these genes during in vivo biofilm formation in monoassociated mice. This analysis revealed that six of the genes were upregulated in vivo, and that genes encoding for proteins involved in epithelial adherence, specialized protein transport, cell aggregation, environmental sensing, and cell lysis contributed to biofilm formation. Inactivation of a serine-rich surface adhesin with a devoted transport system (the SecA2-SecY2 pathway) completely abrogated biofilm formation, indicating that initial adhesion represented the most significant step in biofilm formation, likely conferring host specificity. In summary, this study established that the epithelial selection of bacterial symbionts in the vertebrate gut can be both specific and highly efficient, resulting in biofilms that are exclusively formed by the coevolved strains, and it allowed insight into the bacterial effectors of this process

    Extra-Zodiacal-Cloud Astronomy via Solar Electric Propulsion

    Get PDF
    Solar electric propulsion (SEP) is often considered as primary propulsion for robotic planetary missions, providing the opportunity to deliver more payload mass to difficult, high-delta-velocity destinations. However, SEP application to astrophysics has not been well studied. This research identifies and assesses a new application of SEP as primary propulsion for low-cost high-performance robotic astrophysics missions. The performance of an optical/infrared space observatory in Earth orbit or at the Sun-Earth L2 point (SEL2) is limited by background emission from the Zodiacal dust cloud that has a disk morphology along the ecliptic plane. By delivering an observatory to a inclined heliocentric orbit, most of this background emission can be avoided, resulting in a very substantial increase in science performance. This advantage enabled by SEP allows a small-aperture telescope to rival the performance of much larger telescopes located at SEL2. In this paper, we describe a novel mission architecture in which SEP technology is used to enable unprecedented telescope sensitivity performance per unit collecting area. This extra-zodiacal mission architecture will enable a new class of high-performance, short-development time, Explorer missions whose sensitivity and survey speed can rival flagship-class SEL2 facilities, thus providing new programmatic flexibility for NASA's astronomy mission portfolio. A mission concept study was conducted to evaluate this application of SEP. Trajectory analyses determined that a 700 kg-class science payload could be delivered in just over 2 years to a 2 AU mission orbit inclined 15 to the ecliptic using a 13 kW-class NASA's Evolutionary Xenon Thruster (NEXT) SEP system. A mission architecture trade resulted in a SEP stage architecture, in which the science spacecraft separates from the stage after delivery to the mission orbit. The SEP stage and science spacecraft concepts were defined in collaborative engineering environment studies. The SEP stage architecture approach offers benefits beyond a single astrophysics mission. A variety of low-cost astrophysics missions could employ a standard SEP stage to achieve substantial science benefit. This paper describes the results of this study in detail, including trajectory analysis, spacecraft concept definition, description of telescope/instrument benefits, and application of the resulting SEP stage to other missions. In addition, the benefits of cooperative development and use of the SEP stage, in conjunction with a SEP flight demonstration mission currently in definition at NASA, are considered

    Breakthrough Capability for UVOIR Space Astronomy: Reaching the Darkest Sky

    Get PDF
    We describe how availability of new solar electric propulsion (SEP) technology can substantially increase the science capability of space astronomy missions working within the near-UV to far-infrared (UVOIR) spectrum by making dark sky orbits accessible for the first time. We present two case studies in which SEP is used to enable a 700 kg Explorer-class and 7000 kg flagship-class observatory payload to reach an orbit beyond where the zodiacal dust limits observatory sensitivity. The resulting scientific performance advantage relative to a Sun-Earth L2 point (SEL2) orbit is presented and discussed. We find that making SEP available to astrophysics Explorers can enable this small payload program to rival the science performance of much larger long development-time systems. Similarly, we find that astrophysics utilization of high power SEP being developed for the Asteroid Redirect Robotics Mission (ARRM) can have a substantial impact on the sensitivity performance of heavier flagship-class astrophysics payloads such as the UVOIR successor to the James Webb Space Telescope

    Breakthrough Capability for UVOIR Space Astronomy: Reaching the Darkest Sky

    Get PDF
    We describe how availability of new solar electric propulsion (SEP) technology can substantially increase the science capability of space astronomy missions working within the near-UV to far-infrared (UVOIR) spectrum by making dark sky orbits accessible for the first time. We present a proof of concept case study in which SEP is used to enable a 700 kg Explorer-class observatory payload to reach an orbit beyond where the zodiacal dust limits observatory sensitivity. The resulting scientific performance advantage relative to a Sun-Earth L2 point orbit is presented and discussed. We find that making SEP available to astrophysics Explorers can enable this small payload program to rival the science performance of much larger long development-time systems. We also present flight dynamics analysis which illustrates that this concept can be extended beyond Explorers to substantially improve the sensitivity performance of heavier (7000 kg) flagship-class astrophysics payloads such as the UVOIR successor to the James Webb Space Telescope by using high power SEP that is being developed for the Asteroid Redirect Robotics Mission
    • …
    corecore