1,600 research outputs found

    Quantifying solute spreading and mixing in reservoir rocks using 3-D PET imaging

    Get PDF
    We report results of an experimental investigation into the effects of small-scale (mm-cm) heterogeneities on solute spreading and mixing in a Berea sandstone core. Pulse-tracer tests have been carried out in the Péclet number regime Pe = 6-40 and are supplemented by a unique combination of two imaging techniques. X-ray computed tomography (CT) is used to quantify subcore-scale heterogeneities in terms of permeability contrasts at a spatial resolution of approximately 10 mm3, while [11C] positron emission tomography (PET) is applied to image the spatial and temporal evolution of the full tracer plume non-invasively. To account for both advective spreading and local (Fickian) mixing as driving mechanisms for solute transport, a streamtube model is applied that is based on the one-dimensional advection-dispersion equation. We refer to our modelling approach as semideterministic, because the spatial arrangement of the streamtubes and the corresponding solute travel times are known from the measured rock's permeability map, which required only small adjustments to match the measured tracer breakthrough curve. The model reproduces the three-dimensional PET measurements accurately by capturing the larger-scale tracer plume deformation as well as subcore-scale mixing, while confirming negligible transverse dispersion over the scale of the experiment. We suggest that the obtained longitudinal dispersivity (0.10±0.02 cm) is rock rather than sample specific, because of the ability of the model to decouple subcore-scale permeability heterogeneity effects from those of local dispersion. As such, the approach presented here proves to be very valuable, if not necessary, in the context of reservoir core analyses, because rock samples can rarely be regarded as 'uniformly heterogeneous'

    Capillary pressure heterogeneity and hysteresis for the supercritical CO2/water system in a sandstone

    Get PDF
    We report results from an experimental investigation on the hysteretic behaviour of the capillary pressure curve for the supercritical CO2-water system in a Berea Sandstone core. Previous observations have highlighted the importance of sub-core-scale capillary heterogeneity in developing local saturations during drainage; we show in this study that the same is true for the imbibition process. Spatially distributed drainage and imbibition scanning curves were obtained for mm-scale subsets of the rock sample non-invasively using X-ray CT imagery. Core- and sub-core scale measurements are well described using the Brooks-Corey formalism, which uses a linear trapping model to compute mobile saturations during imbibition. Capillary scaling yields two separate universal drainage and imbibition curves that are representative of the full sub-core scale data set. This enables accurate parameterisation of rock properties at the sub-core scale in terms of capillary scaling factors and permeability, which in turn serve as effective indicators of heterogeneity at the same scale even when hysteresis is a factor. As such, the proposed core-analysis workflow is quite general and provides the required information to populate numerical models that can be used to extend core-flooding experiments to conditions prevalent in the subsurface, which would be otherwise not attainable in the laboratory

    Advanced mineral carbonation: An approach to accelerate CO\u3csub\u3e2\u3c/sub\u3e sequestration using steel production wastes and integrated fluidized bed reactor

    Get PDF
    © Springer Nature Switzerland AG 2019. Industrial pollution is the major source of global warming through emissions of greenhouse gases (GHG’s) like CO2, CH4, and NO2, causing noticeable increasing in the world’s temperature. Mineral carbonation is a method of carbon capture and storage (CCS) through which CO2 is sequestered with advantage of permanent sequestration and no need for post-storage surveillance and monitoring through stabilizing the reactive mineral wastes released from metal industries. This paper applied a simple and an inexpensive hydration process as a pre-treatment step for the carbonation of Ladle Furnace (LF) slag, one of the steel production by-products in UAE, followed by direct gas-solid carbonation in a new designed integrated fluidized bed reactor (FBR). About (10–15)% by weight of produced steel, alkaline solid residues were generated, based on the characteristics of the manufacturing process. The integrated FBR was designed to control the flow rate up to 50 l/min with step accuracy of 0.1 l/min, and temperature up to 200 °C through a double jacket electrical heater. Operating pressure can be adjusted up to 6 bars. All parameters are monitored by SCADA system. A mixture gas of 10% CO2, balanced with air, was used to perform the carbonation process and evaluation the carbonation efficiency as well. A gas analyzer installed at the outlet of FBR was used to measure unreacted CO2 gas after leaving the reactor, and calculate the amount of CO2 captured accordingly. Results of analytical techniques like TGA and XRD emphasized the sequestration of CO2 and show a high efficient carbonation process

    A genome-wide study of Hardy–Weinberg equilibrium with next generation sequence data

    Get PDF
    Statistical tests for Hardy–Weinberg equilibrium have been an important tool for detecting genotyping errors in the past, and remain important in the quality control of next generation sequence data. In this paper, we analyze complete chromosomes of the 1000 genomes project by using exact test procedures for autosomal and X-chromosomal variants. We find that the rate of disequilibrium largely exceeds what might be expected by chance alone for all chromosomes. Observed disequilibrium is, in about 60% of the cases, due to heterozygote excess. We suggest that most excess disequilibrium can be explained by sequencing problems, and hypothesize mechanisms that can explain exceptional heterozygosities. We report higher rates of disequilibrium for the MHC region on chromosome 6, regions flanking centromeres and p-arms of acrocentric chromosomes. We also detected long-range haplotypes and areas with incidental high disequilibrium. We report disequilibrium to be related to read depth, with variants having extreme read depths being more likely to be out of equilibrium. Disequilibrium rates were found to be 11 times higher in segmental duplications and simple tandem repeat regions. The variants with significant disequilibrium are seen to be concentrated in these areas. For next generation sequence data, Hardy–Weinberg disequilibrium seems to be a major indicator for copy number variation.Peer ReviewedPostprint (published version

    Water Challenges for Geologic Carbon Capture and Sequestration

    Get PDF
    Carbon capture and sequestration (CCS) has been proposed as a means to dramatically reduce greenhouse gas emissions with the continued use of fossil fuels. For geologic sequestration, the carbon dioxide is captured from large point sources (e.g., power plants or other industrial sources), transported to the injection site and injected into deep geological formations for storage. This will produce new water challenges, such as the amount of water used in energy resource development and utilization and the “capture penalty” for water use. At depth, brine displacement within formations, storage reservoir pressure increases resulting from injection, and leakage are potential concerns. Potential impacts range from increasing water demand for capture to contamination of groundwater through leakage or brine displacement. Understanding these potential impacts and the conditions under which they arise informs the design and implementation of appropriate monitoring and controls, important both for assurance of environmental safety and for accounting purposes. Potential benefits also exist, such as co-production and treatment of water to both offset reservoir pressure increase and to provide local water for beneficial use

    Distribution of Brevetoxin (PbTx-3) in Mouse Plasma: Association with High-Density Lipoproteins

    Get PDF
    We investigated the brevetoxin congener PbTx-3 to determine its distribution among carrier proteins, including albumin and blood lipoproteins. Using a radiolabeled brevetoxin tracer (PbTx-3), we found that 39% of the radiolabel remained associated with components in mouse plasma after > 15 kDa cutoff dialysis. Of this portion, only 6.8% was bound to serum albumin. We also examined the binding of brevetoxin to various lipoprotein fractions. Plasma, either spiked with PbTx-3 or from mice treated for 30 min with PbTx-3, was fractionated into different-sized lipoproteins by iodixanol gradient ultracentrifugation. Each fraction was then characterized and quantified by agarose gel electrophoresis and brevetoxin radioimmunoassay, respectively. In both the in vitro and in vivo experiments, the majority of brevetoxin immunoreactivity was restricted to only those gradient fractions that contained high-density lipoproteins (HDLs). Independent confirmation of brevetoxin binding to HDLs was provided by high molecular weight (100 kDa cutoff) dialysis of [(3)H]PbTx-3 from lipoprotein fractions as well as a scintillation proximity assay using [(3)H]PbTx-3 and purified human HDLs. This information on the association of brevetoxins with HDLs provides a new foundation for understanding the process by which the toxin is delivered to and removed from tissues and may permit more effective therapeutic measures to treat intoxication from brevetoxins and the related ciguatoxins

    Whole Exome Sequence Analysis Provides Novel Insights into the Genetic Framework of Childhood-Onset Pulmonary Arterial Hypertension.

    Get PDF
    Pulmonary arterial hypertension (PAH) describes a rare, progressive vascular disease caused by the obstruction of pulmonary arterioles, typically resulting in right heart failure. Whilst PAH most often manifests in adulthood, paediatric disease is considered to be a distinct entity with increased morbidity and often an unexplained resistance to current therapies. Recent genetic studies have substantially increased our understanding of PAH pathogenesis, providing opportunities for molecular diagnosis and presymptomatic genetic testing in families. However, the genetic architecture of childhood-onset PAH remains relatively poorly characterised. We sought to investigate a previously unsolved paediatric cohort (n = 18) using whole exome sequencing to improve the molecular diagnosis of childhood-onset PAH. Through a targeted investigation of 26 candidate genes, we applied a rigorous variant filtering methodology to enrich for rare, likely pathogenic variants. This analysis led to the detection of novel PAH risk alleles in five genes, including the first identification of a heterozygous ATP13A3 mutation in childhood-onset disease. In addition, we provide the first independent validation of BMP10 and PDGFD as genetic risk factors for PAH. These data provide a molecular diagnosis in 28% of paediatric cases, reflecting the increased genetic burden in childhood-onset disease and highlighting the importance of next-generation sequencing approaches to diagnostic surveillance

    A semiconductor source of triggered entangled photon pairs?

    Full text link
    The realisation of a triggered entangled photon source will be of great importance in quantum information, including for quantum key distribution and quantum computation. We show here that: 1) the source reported in ``A semiconductor source of triggered entangled photon pairs''[1. Stevenson et al., Nature 439, 179 (2006)]} is not entangled; 2) the entanglement indicators used in Ref. 1 are inappropriate, relying on assumptions invalidated by their own data; and 3) even after simulating subtraction of the significant quantity of background noise, their source has insignificant entanglement.Comment: 5 pages in pre-print format, 1 tabl
    corecore