3 research outputs found

    High-frequency monitoring of nitrogen and phosphorus response in three rural catchments to the end of the 2011–2012 drought in England

    Get PDF
    This paper uses high-frequency bankside measurements from three catchments selected as part of the UK government-funded Demonstration Test Catchments (DTC) project. We compare the hydrological and hydrochemical patterns during the water year 2011–2012 from the Wylye tributary of the River Avon with mixed land use, the Blackwater tributary of the River Wensum with arable land use and the Newby Beck tributary of the River Eden with grassland land use. The beginning of the hydrological year was unusually dry and all three catchments were in states of drought. A sudden change to a wet summer occurred in April 2012 when a heavy rainfall event affected all three catchments. The year-long time series and the individual storm responses captured by in situ nutrient measurements of nitrate and phosphorus (total phosphorus and total reactive phosphorus) concentrations at each site reveal different pollutant sources and pathways operating in each catchment. Large storm-induced nutrient transfers of nitrogen and or phosphorus to each stream were recorded at all three sites during the late April rainfall event. Hysteresis loops suggested transport-limited delivery of nitrate in the Blackwater and of total phosphorus in the Wylye and Newby Beck, which was thought to be exacerbated by the dry antecedent conditions prior to the storm. The high rate of nutrient transport in each system highlights the scale of the challenges faced by environmental managers when designing mitigation measures to reduce the flux of nutrients to rivers from diffuse agricultural sources. It also highlights the scale of the challenge in adapting to future extreme weather events under a changing climate

    Strong and recurring seasonality revealed within stream diatom assemblages

    Get PDF
    Improving stream water quality in agricultural landscapes is an ecological priority and a legislative duty for many governments. Ecosystem health can be effectively characterised by organisms sensitive to water quality changes such as diatoms, single-celled algae that are a ubiquitous component of stream benthos. Diatoms respond within daily timescales to variables including light, temperature, nutrient availability and flow conditions that result from weather and land use characteristics. However, little consideration has been given to the ecological dynamics of diatoms through repeated seasonal cycles when assessing trajectories of stream function, even in catchments actively managed to reduce human pressures. Here, six years of monthly diatom samples from three independent streams, each receiving differing levels of diffuse agricultural pollution, reveal robust and repeated seasonal variation. Predicted seasonal changes in climate-related variables and anticipated ecological impacts must be fully captured in future ecological and water quality assessments, if the apparent resistance of stream ecosystems to pollution mitigation measures is to be better understood

    High frequency variability of environmental drivers determining benthic community dynamics in headwater streams

    Get PDF
    Headwater streams are an important feature of the landscape, with their diversity in structure and associated ecological function providing a potential natural buffer against downstream nutrient export. Phytobenthic communities, dominated in many headwaters by diatoms, must respond to physical and chemical parameters that can vary in magnitude within hours, whereas the ecological regeneration times are much longer. How diatom communities develop in the fluctuating, dynamic environments characteristic of headwaters is poorly understood. Deployment of near-continuous monitoring technology in sub-catchments of the River Eden, NW England, provides the opportunity for measurement of temporal variability in stream discharge and nutrient resource supply to benthic communities, as represented by monthly diatom samples collected over two years. Our data suggest that the diatom communities and the derived Trophic Diatom Index, best reflect stream discharge conditions over the preceding 18–21 days and Total Phosphorus concentrations over a wider antecedent window of 7–21 days. This is one of the first quantitative assessments of long-term diatom community development in response to continuously-measured stream nutrient concentration and discharge fluctuations. The data reveal the sensitivity of these headwater communities to mean conditions prior to sampling, with flow as the dominant variable. With sufficient understanding of the role of antecedent conditions, these methods can be used to inform interpretation of monitoring data, including those collected under the European Water Framework Directive and related mitigation efforts
    corecore