9 research outputs found

    Thingking and utilization technology of coalbed methane in soft and low permeability coal seams in Huainan Mining Area

    Get PDF
    In order to solve the problems that restrict the efficient development of coalbed methane resources under the conditions of soft and low permeability outburst coal seams in Huainan Mining Area, such as complex coal seam structure, multi-source gas emission, rapid decline of drainage flow, high rock roadway and drilling costs, and low (ultra-low) concentration coalbed methane utilization rate, six key technologies suitable for the coordinated development mode of coal and coalbed methane under the condition of coal seam group mining in Huainan mining area are put forward, namely: coalbed methane extraction technology of ground level staged fracturing wells, shield rapid construction technology of coalbed methane extraction roadways, enhanced extraction technology of underground soft coalbed methane, coalbed methane extraction technology of pressure relief in ground mining area, the construction technology of "replacing roadways with holes", and cascade utilization technology of low concentration coalbed methane. The application of supporting key technologies shows that staged fracturing technology and refined drainage and production technology of roof horizontal wells in broken and soft coal seam have effectively improved the pre pumping production of coalbed methane; The full face hard rock roadheader in deep coal mine roadway greatly improves the roadway excavation efficiency, realizing the automation and less humanization of hard rock excavation; Sand adding of hydraulic fracturing and ultra-high hydraulic slotting have realized pressure relief and permeability enhancement in large areas underground coal mine; Type III and IV surface mining area wells can replace the roof high drainage roadway in the treatment of pressure relief gas in coal seam group mining, and reduce the coalbed methane drainage intensity of other measures; The technology of "replacing roadways with holes" has significantly improved the quality of successful directional drilling at middle and high levels in complex roof; Cascade utilization technology of low concentration coalbed methane has greatly reduced the emission of coalbed methane. The six key technologies have guaranteed the safe production in Huainan mining area, and comprehensively improved the output of coal and coalbed methane and the utilization level of coalbed methane. Six key technologies ensure the safe production in Huainan mining area, and comprehensively improved the output of coal and coalbed methane and the utilization level of coalbed methane. Finally, in view of the problems such as high operation cost, low production, small scope of hydraulic fracturing coal reservoir reconstruction technology for surface horizontal wells, and the risk of breakage of mining wells, and small scale of cascade utilization of ultra-low concentration coalbed methane, the development direction of deep CBM precise geological guidance, super large scale efficient reservoir volume transformation, pumping effect evaluation technology, stable and continuous pumping technology of surface wells in mining areas, underground large area intelligent hydraulic enhanced permeability technology, "one well with multiple uses" collaborative pumping CBM technology, and full concentration CBM comprehensive utilization technology are proposed

    Study on Pre Pumping and Outburst Elimination Technology of “one hole and two elimination” in Bedding Directional Long Drilling

    No full text
    Aiming at the problem of gas control in the working face and the roadway to be excavated at the same time due to the small construction length of bedding borehole under the condition of the occurrence of soft coal, a technology of "one hole and two elimination" pre-drainage to eliminate gas outburst by using air screw motor drilling was put forward, and the field test was carried out in the 17102(3) working face of Pansu Coal Mine.The results show that this technology can effectively control the borehole trajectory, ensure the uniform and reasonable range of borehole outburst elimination, solve the problems of long gas treatment cycle caused by the construction of gas treatment roadway, improve the effective drainage time of borehole, ensure enough time and space for gas treatment, and be beneficial to the mining and replacement of mine

    Response Characteristics of Coal-Like Material Subjected to Repeated Hydraulic Fracturing: An Evaluation Based on Real-Time Monitoring of Water Injection Pressure and Roof Stress Distribution

    No full text
    Conventional hydraulic fracturing has several disadvantages, including a short effective extraction time and low fracture conductivity during long-term extraction. Aiming at overcoming these shortcomings, a similar simulation test of repeated hydraulic fracturing was conducted in this study, and the evolutionary rules regarding the injection water pressure and stress distribution of the coal seam roof during this repeated hydraulic fracturing were revealed. The research results show that after multiple hydraulic fracturing, the number of cracks in the coal seam and the range of fracturing influence have increased significantly. As the number of fracturing increases, the initial pressure required for cracking decreases. The highest water injection pressure of the first fracturing was 2.8 MPa, while the highest water injection pressures of the second and third fracturing were 2.7 MPa and 2.4 MPa, respectively. As the number of fracturing increases, the area of increased stress will continue to expand. After the first fracturing, the impact radius of fracturing is 100 cm. After the second fracturing, the radius of influence of fracturing expanded to 150 cm. When the third fracturing was over, the radius of influence of the fracturing expanded to approximately 250 cm. It can be seen that, compared with conventional hydraulic fracturing, repeated hydraulic fracturing shows better fracturing effect. The research results can be used as a basis for repeated hydraulic fracturing field tests to increase coal seam permeability
    corecore