107 research outputs found
ATP13A2 deficiency disrupts lysosomal polyamine export
ATP13A2 (PARK9) is a late endolysosomal transporter that is genetically implicated in a spectrum of neurodegenerative disorders, including Kufor-Rakeb syndrome—a parkinsonism with dementia1—and early-onset Parkinson’s disease2. ATP13A2 offers protection against genetic and environmental risk factors of Parkinson’s disease, whereas loss of ATP13A2 compromises lysosomes3. However, the transport function of ATP13A2 in lysosomes remains unclear. Here we establish ATP13A2 as a lysosomal polyamine exporter that shows the highest affinity for spermine among the polyamines examined. Polyamines stimulate the activity of purified ATP13A2, whereas ATP13A2 mutants that are implicated in disease are functionally impaired to a degree that correlates with the disease phenotype. ATP13A2 promotes the cellular uptake of polyamines by endocytosis and transports them into the cytosol, highlighting a role for endolysosomes in the uptake of polyamines into cells. At high concentrations polyamines induce cell toxicity, which is exacerbated by ATP13A2 loss due to lysosomal dysfunction, lysosomal rupture and cathepsin B activation. This phenotype is recapitulated in neurons and nematodes with impaired expression of ATP13A2 or its orthologues. We present defective lysosomal polyamine export as a mechanism for lysosome-dependent cell death that may be implicated in neurodegeneration, and shed light on the molecular identity of the mammalian polyamine transport system
Detection of mammaglobin mRNA in peripheral blood is associated with high grade breast cancer: Interim results of a prospective cohort study
<p>Abstract</p> <p>Background</p> <p>We sought to examine the detection rate of cancer cells in peripheral blood (PBL) and in bone marrow (BM) using an established 7-gene marker panel and evaluated whether there were any definable associations of any individual gene with traditional predictors of prognosis.</p> <p>Methods</p> <p>Patients with T1-T3 primary breast cancer were enrolled into a prospective, multi-institutional cohort study. In this interim analysis 215 PBL and 177 BM samples were analyzed by multimarker, real-time RT-PCR analysis designed to detect circulating and disseminated breast cancer cells.</p> <p>Results</p> <p>At a threshold of three standard deviations from the mean expression level of normal controls, 63% (136/215) of PBL and 11% (19/177) of BM samples were positive for at least one cancer-associated marker. Marker positivity in PBL demonstrated a statistically significant association with grade II-III (vs. grade I; p = 0.0083). Overexpression of the mammaglobin (<it>mam</it>) gene alone had a statistically significant association with high tumor grade (p = 0.0315), and showed a trend towards ER-negative tumors and a high risk category. There was no association between marker positivity in PBL and the pathologic (H&E) and/or molecular (RT-PCR) status of the axillary lymph nodes (ALN).</p> <p>Conclusion</p> <p>This study suggests that molecular detection of circulating cancer cells in PBL detected by RT-PCR is associated with high tumor grade and specifically that overexpression of the <it>mam </it>gene in PBL may be a poor prognostic indicator. There was no statistically significant association between overexpression of cancer-associated genes in PBL and ALN status, supporting the concept of two potentially separate metastatic pathways.</p
Recent translational research: circulating tumor cells in breast cancer patients
In breast cancer patients, hematogenous tumor cell dissemination can be detected, even at the single cell level, by applying immunocytochemical and molecular assays. Various methods for the detection of circulating tumor cells in the peripheral blood have been described. Results from recently reported studies suggest that circulating tumor cell levels may serve as a prognostic marker and for the early assessment of therapeutic response in patients with metastatic breast cancer. However, in early-stage breast cancer, the impact of circulating tumor cells is less well established than the presence of disseminated tumor cells in bone marrow; several clinical studies have demonstrated that cells of the latter type are an independent prognostic factor at primary diagnosis. In this article we briefly summarize recent studies examining the presence of circulating tumor cells in the blood and discuss further clinical applications
The prognostic significance of tumour cell detection in the peripheral blood versus the bone marrow in 733 early-stage breast cancer patients
Abstract Introduction The detection of circulating tumour cells (CTCs) in the peripheral blood and disseminated tumour cells (DTCs) in the bone marrow are promising prognostic tools for risk stratification in early breast cancer. There is, however, a need for further validation of these techniques in larger patient cohorts with adequate follow-up periods. Methods We assayed CTCs and DTCs at primary surgery in 733 stage I or II breast cancer patients with a median follow-up time of 7.6 years. CTCs were detected in samples of peripheral blood mononuclear cells previously stored in liquid-nitrogen using a previously-developed multi-marker quantitative PCR (QPCR)-based assay. DTCs were detected in bone marrow samples by immunocytochemical analysis using anti-cytokeratin antibodies. Results CTCs were detected in 7.9% of patients, while DTCs were found in 11.7%. Both CTC and DTC positivity predicted poor metastasis-free survival (MFS) and breast cancer-specific survival (BCSS); MFS hazard ratio (HR) = 2.4 (P < 0.001)/1.9 (P = 0.006), and BCSS HR = 2.5 (P < 0.001)/2.3 (P = 0.01), for CTC/DTC status, respectively). Multivariate analyses demonstrated that CTC status was an independent prognostic variable for both MFS and BCSS. CTC status also identified a subset of patients with significantly poorer outcome among low-risk node negative patients that did not receive adjuvant systemic therapy (MFS HR 2.3 (P = 0.039), BCSS HR 2.9 (P = 0.017)). Using both tests provided increased prognostic information and indicated different relevance within biologically dissimilar breast cancer subtypes. Conclusions These results support the use of CTC analysis in early breast cancer to generate clinically useful prognostic information
Dysregulation of Cell Polarity Proteins Synergize with Oncogenes or the Microenvironment to Induce Invasive Behavior in Epithelial Cells
Changes in expression and localization of proteins that regulate cell and tissue polarity are frequently observed in carcinoma. However, the mechanisms by which changes in cell polarity proteins regulate carcinoma progression are not well understood. Here, we report that loss of polarity protein expression in epithelial cells primes them for cooperation with oncogenes or changes in tissue microenvironment to promote invasive behavior. Activation of ErbB2 in cells lacking the polarity regulators Scribble, Dlg1 or AF-6, induced invasive properties. This cooperation required the ability of ErbB2 to regulate the Par6/aPKC polarity complex. Inhibition of the ErbB2-Par6 pathway was sufficient to block ErbB2-induced invasion suggesting that two polarity hits may be needed for ErbB2 to promote invasion. Interestingly, in the absence of ErbB2 activation, either a combined loss of two polarity proteins, or exposure of cells lacking one polarity protein to cytokines IL-6 or TNFα induced invasive behavior in epithelial cells. We observed the invasive behavior only when cells were plated on a stiff matrix (Matrigel/Collagen-1) and not when plated on a soft matrix (Matrigel alone). Cells lacking two polarity proteins upregulated expression of EGFR and activated Akt. Inhibition of Akt activity blocked the invasive behavior identifying a mechanism by which loss of polarity promotes invasion of epithelial cells. Thus, we demonstrate that loss of polarity proteins confers phenotypic plasticity to epithelial cells such that they display normal behavior under normal culture conditions but display aggressive behavior in response to activation of oncogenes or exposure to cytokines
Microarray-based identification and RT-PCR test screening for epithelial-specific mRNAs in peripheral blood of patients with colon cancer
BACKGROUND: The efficacy of screening for colorectal cancer using a simple blood-based assay for the detection of tumor cells disseminated in the circulation at an early stage of the disease is gaining positive feedback from several lines of research. This method seems able to reduce colorectal cancer mortality and may replace colonoscopy as the most effective means of detecting colonic lesions. METHODS: In this work, we present a new microarray-based high-throughput screening method to identifying candidate marker mRNAs for the early detection of epithelial cells diluted in peripheral blood cells. This method includes 1. direct comparison of different samples of colonic mucosa and of blood cells to identify consistent epithelial-specific mRNAs from among 20,000 cDNA assayed by microarray slides; 2. identification of candidate marker mRNAs by data analysis, which allowed selection of only 10 putative differentially expressed genes; 3. Selection of some of the most suitable mRNAs (TMEM69, RANBP3 and PRSS22) that were assayed in blood samples from normal subjects and patients with colon cancer as possible markers for the presence of epithelial cells in the blood, using reverse transcription – polymerase chain reaction (RT-PCR). RESULTS: Our present results seem to provide an indication, for the first time obtained by genome-scale screening, that a suitable and consistent colon epithelium mRNA marker may be difficult to identify. CONCLUSION: The design of new approaches to identify such markers is warranted
The multiplex bead array approach to identifying serum biomarkers associated with breast cancer
Introduction Breast cancer is the most common type of cancer seen in women in western countries. Thus, diagnostic modalities sensitive to early-stage breast cancer are needed. Antibody-based array platforms of a data-driven type, which are expected to facilitate more rapid and sensitive detection of novel biomarkers, have emerged as a direct, rapid means for profiling cancer-specific signatures using small samples. In line with this concept, our group constructed an antibody bead array panel for 35 analytes that were selected during the discovery step. This study was aimed at testing the performance of this 35-plex array panel in profiling signatures specific for primary non-metastatic breast cancer and validating its diagnostic utility in this independent population. Methods Thirty-five analytes were selected from more than 50 markers through screening steps using a serum bank consisting of 4,500 samples from various types of cancer. An antibody-bead array of 35 markers was constructed using the Luminex (TM) bead array platform. A study population consisting of 98 breast cancer patients and 96 normal subjects was analysed using this panel. Multivariate classification algorithms were used to find discriminating biomarkers and validated with another independent population of 90 breast cancer and 79 healthy controls. Results Serum concentrations of epidermal growth factor, soluble CD40-ligand and proapolipoprotein A1 were increased in breast cancer patients. High-molecular-weight-kininogen, apolipoprotein A1, soluble vascular cell adhesion molecule-1, plasminogen activator inhibitor-1, vitamin-D binding protein and vitronectin were decreased in the cancer group. Multivariate classification algorithms distinguished breast cancer patients from the normal population with high accuracy (91.8% with random forest, 91.5% with support vector machine, 87.6% with linear discriminant analysis). Combinatorial markers also detected breast cancer at an early stage with greater sensitivity. Conclusions The current study demonstrated the usefulness of the antibody-bead array approach in finding signatures specific for primary non-metastatic breast cancer and illustrated the potential for early, high sensitivity detection of breast cancer. Further validation is required before array-based technology is used routinely for early detection of breast cancer.Kenny HA, 2008, J CLIN INVEST, V118, P1367, DOI 10.1172/JCI33775Shah FD, 2008, INTEGR CANCER THER, V7, P33, DOI 10.1177/1534735407313883Carlsson A, 2008, EUR J CANCER, V44, P472, DOI 10.1016/j.ejca.2007.11.025Nolen BM, 2008, BREAST CANCER RES, V10, DOI 10.1186/bcr2096Brogren H, 2008, THROMB RES, V122, P271, DOI 10.1016/j.thromres.2008.04.008Varki A, 2007, BLOOD, V110, P1723, DOI 10.1182/blood-2006-10-053736Madsen CD, 2007, J CELL BIOL, V177, P927, DOI 10.1083/jcb.200612058Levenson VV, 2007, BBA-GEN SUBJECTS, V1770, P847, DOI 10.1016/j.bbagen.2007.01.017VAZQUEZMARTIN A, 2007, EUR J CANCER, V43, P1117GARCIA M, 2007, GLOBAL CANC FACTS FIMoore LE, 2006, CANCER EPIDEM BIOMAR, V15, P1641, DOI 10.1158/1055-9965.EPI-05-0980Borrebaeck CAK, 2006, EXPERT OPIN BIOL TH, V6, P833, DOI 10.1517/14712598.6.8.833Zannis VI, 2006, J MOL MED-JMM, V84, P276, DOI 10.1007/s00109-005-0030-4Jemal A, 2006, CA-CANCER J CLIN, V56, P106Silva HC, 2006, NEOPLASMA, V53, P538Chahed K, 2005, INT J ONCOL, V27, P1425Jain KK, 2005, EXPERT OPIN PHARMACO, V6, P1463, DOI 10.1517/14656566.6.9.1463Abe O, 2005, LANCET, V365, P1687Paradis V, 2005, HEPATOLOGY, V41, P40, DOI 10.1002/hep.20505Molina R, 2005, TUMOR BIOL, V26, P281, DOI 10.1159/000089260Furberg AS, 2005, CANCER EPIDEM BIOMAR, V14, P33Benoy IH, 2004, CLIN CANCER RES, V10, P7157Song JS, 2004, BLOOD, V104, P2065, DOI 10.1182/blood-2004-02-0449Schairer C, 2004, J NATL CANCER I, V96, P1311, DOI 10.1093/jnci/djh253Hellman K, 2004, BRIT J CANCER, V91, P319, DOI 10.1038/sj.bjc.6601944Roselli M, 2004, CLIN CANCER RES, V10, P610Zhou AW, 2003, NAT STRUCT BIOL, V10, P541, DOI 10.1038/nsb943Hapke S, 2003, BIOL CHEM, V384, P1073Miller JC, 2003, PROTEOMICS, V3, P56Amirkhosravi A, 2002, BLOOD COAGUL FIBRIN, V13, P505Bonello N, 2002, HUM REPROD, V17, P2272Li JN, 2002, CLIN CHEM, V48, P1296Louhimo J, 2002, ANTICANCER RES, V22, P1759Knezevic V, 2001, PROTEOMICS, V1, P1271Di Micco P, 2001, DIGEST LIVER DIS, V33, P546Ferrigno D, 2001, EUR RESPIR J, V17, P667Webb DJ, 2001, J CELL BIOL, V152, P741Gion M, 2001, EUR J CANCER, V37, P355Schonbeck U, 2001, CELL MOL LIFE SCI, V58, P4Blackwell K, 2000, J CLIN ONCOL, V18, P600Carriero MV, 1999, CANCER RES, V59, P5307Antman K, 1999, JAMA-J AM MED ASSOC, V281, P1470Loskutoff DJ, 1999, APMIS, V107, P54Molina R, 1998, BREAST CANCER RES TR, V51, P109Bajou K, 1998, NAT MED, V4, P923Chan DW, 1997, J CLIN ONCOL, V15, P2322Chu KC, 1996, J NATL CANCER I, V88, P1571vanDalen A, 1996, ANTICANCER RES, V16, P2345Yamamoto N, 1996, CANCER RES, V56, P2827KOCH AE, 1995, NATURE, V376, P517HADDAD JG, 1995, J STEROID BIOCHEM, V53, P579FOEKENS JA, 1994, J CLIN ONCOL, V12, P1648GEARING AJH, 1993, IMMUNOL TODAY, V14, P506HUTCHENS TW, 1993, RAPID COMMUN MASS SP, V7, P576DECLERCK PJ, 1992, J BIOL CHEM, V267, P11693GABRIJELCIC D, 1992, AGENTS ACTIONS S, V38, P350BIEGLMAYER C, 1991, TUMOR BIOL, V12, P138DNISTRIAN AM, 1991, TUMOR BIOL, V12, P82VANDALEN A, 1990, TUMOR BIOL, V11, P189KARAS M, 1988, ANAL CHEM, V60, P2299, DOI 10.1021/ac00171a028LERNER WA, 1983, INT J CANCER, V31, P463WESTGARD JO, 1981, CLIN CHEM, V27, P493TROUSSEAU A, 1865, CLIN MED HOTEL DIEU, V3, P654*R PROJ, R PROJ STAT COMP1
- …