658 research outputs found

    Biomarkers of environmental tobacco smoke exposure.

    Get PDF
    Biomarkers are desirable for quantitating human exposure to environmental tobacco smoke (ETS) and for predicting potential health risks for exposed individuals. A number of biomarkers of ETS have been proposed. At present cotinine, measured in blood, saliva, or urine, appears to be the most specific and the most sensitive biomarker. In nonsmokers with significant exposure to ETS, cotinine levels in the body are derived primarily from tobacco smoke, can be measured with extremely high sensitivity, and reflect exposure to a variety of types of cigarettes independent of machine-determined yield. Under conditions of sustained exposure to ETS (i.e., over hours or days), cotinine levels reflect exposure to other components of ETS. Supporting the validity of cotinine as a biomarker, cotinine levels have been positively correlated to the risks of some ETS-related health complications in children who are not cigarette smokers

    N-Acetylcysteine Increases the Frequency of Bone Marrow Pro-B/Pre-B Cells, but Does Not Reverse Cigarette Smoking-Induced Loss of This Subset

    Get PDF
    We previously showed that mice exposed to cigarette smoke for three weeks exhibit loss of bone marrow B cells at the Pro-B-to-pre-B cell transition, but the reason for this is unclear. The antioxidant N-acetylcysteine (NAC), a glutathione precursor, has been used as a chemopreventive agent to reduce adverse effects of cigarette smoke exposure on lung function. Here we determined whether smoke exposure impairs B cell development by inducing cell cycle arrest or apoptosis, and whether NAC treatment prevents smoking-induced loss of developing B cells.Groups of normal mice were either exposed to filtered room air or cigarette smoke with or without concomitant NAC treatment for 5 days/week for three weeks. Bone marrow B cell developmental subsets were enumerated, and sorted pro-B (B220(+)CD43(+)) and pre-B (B220(+)CD43(-)) cell fractions were analyzed for cell cycle status and the percentage of apoptotic cells. We find that, compared to sham controls, smoke-exposed mice have ∼60% fewer pro-B/pre-B cells, regardless of NAC treatment. Interestingly, NAC-treated mice show a 21-38% increase in total bone marrow cellularity and lymphocyte frequency and about a 2-fold increase in the pro-B/pre-B cell subset, compared to sham-treated controls. No significant smoking- or NAC-dependent differences were detected in frequency of apoptotic cells or the percentage cells in the G1, S, or G2 phases of the cycle.The failure of NAC treatment to prevent smoking-induced loss of bone marrow pre-B cells suggests that oxidative stress is not directly responsible for this loss. The unexpected expansion of the pro-B/pre-B cell subset in response to NAC treatment suggests oxidative stress normally contributes to cell loss at this developmental stage, and also reveals a potential side effect of therapeutic administration of NAC to prevent smoking-induced loss of lung function

    Design, baseline characteristics, and retention of African American light smokers into a randomized trial involving biological data

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>African Americans experience significant tobacco-related health disparities despite the fact that over half of African American smokers are light smokers (use ≤10 cigarettes per day). African Americans have been under-represented in smoking cessation research, and few studies have evaluated treatment for light smokers. This paper describes the study design, measures, and baseline characteristics from <it>Kick It at Swope III </it>(KIS-III), the first treatment study of bupropion for African American light smokers.</p> <p>Methods</p> <p>Five hundred forty African American light smokers were randomly assigned to receive bupropion (150mg bid) (n = 270) or placebo (n = 270) for 7 weeks. All participants received written materials and health education counseling. Participants responded to survey items and provided blood samples for evaluation of phenotype and genotype of CYP2A6 and CYP2B6 enzymes involved in nicotine and bupropion metabolism. Primary outcome was cotinine-verified 7-day point prevalence smoking abstinence at Week 26 follow-up.</p> <p>Results</p> <p>Of 2,628 individuals screened, 540 were eligible, consented, and randomized to treatment. Participants had a mean age of 46.5 years and 66.1% were women. Participants smoked an average of 8.0 cigarettes per day, had a mean exhaled carbon monoxide of 16.4ppm (range 1-55) and a mean serum cotinine of 275.8ng/ml. The mean Fagerström Test for Nicotine Dependence was 3.2, and 72.2% of participants smoked within 30 minutes of waking. The average number of quit attempts in the past year was 3.7 and 24.2% reported using pharmacotherapy in their most recent quit attempt. Motivation and confidence to quit were high.</p> <p>Conclusion</p> <p>KIS-III is the first study designed to examine both nicotine and bupropion metabolism, evaluating CYP2A6 and CYP2B6 phenotype and genotype in conjunction with psychosocial factors, in the context of treatment of African American light smokers. Of 1629 smokers screened for study participation, only 18 (1.1%) were ineligible to participate in the study because they refused blood draws, demonstrating the feasibility of recruiting and enrolling African American light smokers into a clinical treatment trial involving biological data collection and genetic analyses. Future evaluation of individual factors associated with treatment outcome will contribute to advancing tailored tobacco use treatment with the goal of enhancing treatment and reducing health disparities for African American light smokers.</p> <p>Trial Registration</p> <p>ClinicalTrials.gov: <a href="URL">NCT00666978</a></p

    Biobehavioral research on nicotine use in women

    Full text link
    More American women are taking up smoking than men and fewer are quitting; if current trends continue, rates for women will surpass those for men by the mid-1990's. But ironically, much of what is known about the biobehavioural aspects of smoking is based on research using male subjects. The present paper reviews evidence suggesting that: (1) women may differ from men with regard to nicotine intake and/or effects; (2) nicotine intake and effects may be influenced by menstrual cycle phase; (3) oral contraceptive use and estrogen replacement therapy may affect intake and effects of nicotine; (4) the effects of chronic nicotine use on female reproductive endocrinology may have implications for the reinforcement of smoking; and (5) pharmacological agents used to treat smoking may have different effects in women than in men. Guidelines and suggestions are presented by future biobehavioural research in women, including standardization of assessment procedures, attention to the use of appropriate controls, and use of pharmacological probes.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/73978/1/j.1360-0443.1991.tb01802.x.pd

    The influence of parental smoking and family type on saliva cotinine in UK ethnic minority children: a cross sectional study

    Get PDF
    Background In the United Kingdom, there has been an increase in cigarette smoking in ethnic minority adults since the 1970s; in some groups levels are now similar to that of White British people. We aimed to examine the determinants of exposure to secondhand smoke in ethnic minority children. We hypothesised that exposure to secondhand smoke in children will vary across ethnic groups, but that the correlates of exposure would be similar to that of Whites. Methods The Determinants of Adolescent Social well-being and Health sample comprises 3468 White United Kingdom and ethnic minority (Black Caribbean, Black African, Indian, Pakistani, Bangladeshi) pupils aged 11-13 yrs. Outcome was saliva cotinine concentration. Explanatory variables collected by self-complete questionnaire included ethnicity, child reported household smoking and socio-economic circumstances. Data were analysed using linear regression models with a random intercept function. Results Ethnic minority children had lower saliva cotinine than Whites, partly explained by less smoking among parents. White and Black Caribbean children had higher cotinine levels if they lived in a household with a maternal smoker only, than with a paternal smoker only. Living in a lone compared to a dual parent household was associated with increased cotinine concentration of 45% (95%CI 5, 99%) in Whites, 27% (95%CI 5,53%) in Black Caribbeans and 21% (95%CI 1, 45%) in Black Africans after adjusting for household smoking status. Material disadvantage was a significant correlate only for White children (40% (95%CI 1, 94%) increase in cotinine in least compared to most advantaged group). Conclusions Ethnic minority children were less exposed to secondhand smoke than Whites, but the variations within groups were similarly patterned. These findings suggest that it is important not to be complacent about low smoking prevalence in some minority groups

    Pharmacogenetics of Nicotine Metabolism in Twins: Methods and Procedures

    Get PDF
    This article describes a pharmacogenetic investigation of nicotine metabolism in twins. One hundred and thirty-nine twin pairs (110 monozygotic and 29 dizygotic) were recruited and assessed for smoking status, zygosity, and health conditions known or suspected to affect drug metabolism. Participants underwent a 30-minute infusion of stable isotope-labeled nicotine and its major metabolite, cotinine, followed by an 8-hour in-hospital stay. Blood and urine samples were taken at regular intervals for analysis of nicotine, cotinine, and metabolites by gas chromatography-mass spectrometry or liquid chromatography-mass spectrometry and subsequent characterization of pharmacokinetic phenotypes. DNA was genotyped to confirm zygosity and for variation in the primary gene involved in nicotine metabolism, CYP2A6. Univariate and multivariate biometric analyses planned for the future will determine genetic and environmental influences on each pharmacokinetic measure individually and in combination with each other, and in the presence and absence of covariates, including measured genotype. When the analyses are completed, this study will result in a more complete characterization of the impact of genetic and environmental influences on nicotine and cotinine metabolic pathways than has heretofore been reported. The approach taken, with its use of a quantitative model of nicotine metabolism, highly refined metabolic phenotypes, measured genotype, and advanced tools for biometric genetic analysis, provides a model for the use of twins in next-generation studies of complex drug-metabolism phenotypes
    corecore