572 research outputs found

    Bi-layer Kinetic Inductance Detectors for space observations between 80-120 GHz

    Full text link
    We have developed Lumped Element Kinetic Inductance Detectors (LEKID) sensitive in the frequency band from 80 to 120~GHz. In this work, we take advantage of the so-called proximity effect to reduce the superconducting gap of Aluminium, otherwise strongly suppressing the LEKID response for frequencies smaller than 100~GHz. We have designed, produced and optically tested various fully multiplexed arrays based on multi-layers combinations of Aluminium (Al) and Titanium (Ti). Their sensitivities have been measured using a dedicated closed-circle 100 mK dilution cryostat and a sky simulator allowing to reproduce realistic observation conditions. The spectral response has been characterised with a Martin-Puplett interferometer up to THz frequencies, and with a resolution of 3~GHz. We demonstrate that Ti-Al LEKID can reach an optical sensitivity of about 1.41.4 101710^{-17}~W/Hz0.5W/Hz^{0.5} (best pixel), or 2.22.2 101710^{-17}~W/Hz0.5W/Hz^{0.5} when averaged over the whole array. The optical background was set to roughly 0.4~pW per pixel, typical for future space observatories in this particular band. The performance is close to a sensitivity of twice the CMB photon noise limit at 100~GHz which drove the design of the Planck HFI instrument. This figure remains the baseline for the next generation of millimetre-wave space satellites.Comment: 7 pages, 9 figures, submitted to A&

    Semliki Forest virus induced, immune mediated demyelination: the effect of irradiation

    Get PDF
    International audienceThe Dark Energy Camera has captured a large set of images as part of Science Verification (SV) for the Dark Energy Survey (DES). The SV footprint covers a large portion of the outer Large Magellanic Cloud (LMC), providing photometry 1.5 mag fainter than the main sequence turn-off of the oldest LMC stellar population. We derive geometrical and structural parameters for various stellar populations in the LMC disc. For the distribution of all LMC stars, we find an inclination of i = -38.14° ± 0.08° (near side in the north) and a position angle for the line of nodes of θ0 = 129.51° ± 0.17°. We find that stars younger than ∼4 Gyr are more centrally concentrated than older stars. Fitting a projected exponential disc shows that the scale radius of the old populations is R>4 Gyr = 1.41 ± 0.01 kpc, while the younger population has R = 0.72 ± 0.01 kpc. However, the spatial distribution of the younger population deviates significantly from the projected exponential disc model. The distribution of old stars suggests a large truncation radius of Rt = 13.5 ± 0.8 kpc. If this truncation is dominated by the tidal field of the Galaxy, we find that the LMC is {∼eq } 24^{+9}_{-6} times less massive than the encircled Galactic mass. By measuring the Red Clump peak magnitude and comparing with the best-fitting LMC disc model, we find that the LMC disc is warped and thicker in the outer regions north of the LMC centre. Our findings may either be interpreted as a warped and flared disc in the LMC outskirts, or as evidence of a spheroidal halo component

    Photometric redshifts and clustering of emission line galaxies selected jointly by DES and eBOSS

    Get PDF
    We present the results of the first test plates of the extended Baryon Oscillation Spectroscopic Survey. This paper focuses on the emission line galaxies (ELG) population targetted from the Dark Energy Survey (DES) photometry. We analyse the success rate, efficiency, redshift distribution, and clustering properties of the targets. From the 9000 spectroscopic redshifts targetted, 4600 have been selected from the DES photometry. The total success rate for redshifts between 0.6 and 1.2 is 71\% and 68\% respectively for a bright and faint, on average more distant, samples including redshifts measured from a single strong emission line. We find a mean redshift of 0.8 and 0.87, with 15 and 13\% of unknown redshifts respectively for the bright and faint samples. In the redshift range 0.6<z<1.2, for the most secure spectroscopic redshifts, the mean redshift for the bright and faint sample is 0.85 and 0.9 respectively. Star contamination is lower than 2\%. We measure a galaxy bias averaged on scales of 1 and 10~Mpc/h of 1.72 \pm 0.1 for the bright sample and of 1.78 \pm 0.12 for the faint sample. The error on the galaxy bias have been obtained propagating the errors in the correlation function to the fitted parameters. This redshift evolution for the galaxy bias is in agreement with theoretical expectations for a galaxy population with MB-5\log h < -21.0. We note that biasing is derived from the galaxy clustering relative to a model for the mass fluctuations. We investigate the quality of the DES photometric redshifts and find that the outlier fraction can be reduced using a comparison between template fitting and neural network, or using a random forest algorithm

    Emergent Geometry and Gravity from Matrix Models: an Introduction

    Full text link
    A introductory review to emergent noncommutative gravity within Yang-Mills Matrix models is presented. Space-time is described as a noncommutative brane solution of the matrix model, i.e. as submanifold of \R^D. Fields and matter on the brane arise as fluctuations of the bosonic resp. fermionic matrices around such a background, and couple to an effective metric interpreted in terms of gravity. Suitable tools are provided for the description of the effective geometry in the semi-classical limit. The relation to noncommutative gauge theory and the role of UV/IR mixing is explained. Several types of geometries are identified, in particular "harmonic" and "Einstein" type of solutions. The physics of the harmonic branch is discussed in some detail, emphasizing the non-standard role of vacuum energy. This may provide new approach to some of the big puzzles in this context. The IKKT model with D=10 and close relatives are singled out as promising candidates for a quantum theory of fundamental interactions including gravity.Comment: Invited topical review for Classical and Quantum Gravity. 57 pages, 5 figures. V2,V3: minor corrections and improvements. V4,V5: some improvements, refs adde

    The quantum critical point in CeRhIn_5: a resistivity study

    Full text link
    The pressure--temperature phase diagram of CeRhIn_5 has been studied under high magnetic field by resistivity measurements. Clear signatures of a quantum critical point has been found at a critical pressure of p_c = 2.5 GPa. The field induced magnetic state in the superconducting state is stable up to the highest field. At p_c the antiferromagnetic ground-state under high magnetic field collapses very rapidly. Clear signatures of p_c are the strong enhancement of the resistivity in the normal state and of the inelastic scattering term. No clear T2 temperature dependence could be found for pressures above T_c. From the analysis of the upper critical field within a strong coupling model we present the pressure dependence of the coupling parameter lambda and the gyromagnetic ratio g. No signatures of a spatially modulated order parameter could be evidenced. A detailed comparison with the magnetic field--temperature phase diagram of CeCoIn_5 is given. The comparison between CeRhIn_5 and CeCoIn_5 points out the importance to take into account the field dependence of the effective mass in the calculation of the superconducting upper critical field H_c2. It suggests also that when the magnetic critical field H_(0) becomes lower than H_c2 (0)$, the persistence of a superconducting pseudo-gap may stick the antiferromagnetism to H_c2 (0).Comment: 15 pages, 20 figures, to be published in J. Phys. Soc. Jp
    corecore