755 research outputs found
Bi-layer Kinetic Inductance Detectors for space observations between 80-120 GHz
We have developed Lumped Element Kinetic Inductance Detectors (LEKID)
sensitive in the frequency band from 80 to 120~GHz. In this work, we take
advantage of the so-called proximity effect to reduce the superconducting gap
of Aluminium, otherwise strongly suppressing the LEKID response for frequencies
smaller than 100~GHz. We have designed, produced and optically tested various
fully multiplexed arrays based on multi-layers combinations of Aluminium (Al)
and Titanium (Ti). Their sensitivities have been measured using a dedicated
closed-circle 100 mK dilution cryostat and a sky simulator allowing to
reproduce realistic observation conditions. The spectral response has been
characterised with a Martin-Puplett interferometer up to THz frequencies, and
with a resolution of 3~GHz. We demonstrate that Ti-Al LEKID can reach an
optical sensitivity of about ~ (best pixel), or
~ when averaged over the whole array. The optical
background was set to roughly 0.4~pW per pixel, typical for future space
observatories in this particular band. The performance is close to a
sensitivity of twice the CMB photon noise limit at 100~GHz which drove the
design of the Planck HFI instrument. This figure remains the baseline for the
next generation of millimetre-wave space satellites.Comment: 7 pages, 9 figures, submitted to A&
Semliki Forest virus induced, immune mediated demyelination: the effect of irradiation
International audienceThe Dark Energy Camera has captured a large set of images as part of Science Verification (SV) for the Dark Energy Survey (DES). The SV footprint covers a large portion of the outer Large Magellanic Cloud (LMC), providing photometry 1.5 mag fainter than the main sequence turn-off of the oldest LMC stellar population. We derive geometrical and structural parameters for various stellar populations in the LMC disc. For the distribution of all LMC stars, we find an inclination of i = -38.14° ± 0.08° (near side in the north) and a position angle for the line of nodes of θ0 = 129.51° ± 0.17°. We find that stars younger than ∼4 Gyr are more centrally concentrated than older stars. Fitting a projected exponential disc shows that the scale radius of the old populations is R>4 Gyr = 1.41 ± 0.01 kpc, while the younger population has R = 0.72 ± 0.01 kpc. However, the spatial distribution of the younger population deviates significantly from the projected exponential disc model. The distribution of old stars suggests a large truncation radius of Rt = 13.5 ± 0.8 kpc. If this truncation is dominated by the tidal field of the Galaxy, we find that the LMC is {∼eq } 24^{+9}_{-6} times less massive than the encircled Galactic mass. By measuring the Red Clump peak magnitude and comparing with the best-fitting LMC disc model, we find that the LMC disc is warped and thicker in the outer regions north of the LMC centre. Our findings may either be interpreted as a warped and flared disc in the LMC outskirts, or as evidence of a spheroidal halo component
Photometric redshifts and clustering of emission line galaxies selected jointly by DES and eBOSS
We present the results of the first test plates of the extended Baryon
Oscillation Spectroscopic Survey. This paper focuses on the emission line
galaxies (ELG) population targetted from the Dark Energy Survey (DES)
photometry. We analyse the success rate, efficiency, redshift distribution, and
clustering properties of the targets. From the 9000 spectroscopic redshifts
targetted, 4600 have been selected from the DES photometry. The total success
rate for redshifts between 0.6 and 1.2 is 71\% and 68\% respectively for a
bright and faint, on average more distant, samples including redshifts measured
from a single strong emission line. We find a mean redshift of 0.8 and 0.87,
with 15 and 13\% of unknown redshifts respectively for the bright and faint
samples. In the redshift range 0.6<z<1.2, for the most secure spectroscopic
redshifts, the mean redshift for the bright and faint sample is 0.85 and 0.9
respectively. Star contamination is lower than 2\%. We measure a galaxy bias
averaged on scales of 1 and 10~Mpc/h of 1.72 \pm 0.1 for the bright sample and
of 1.78 \pm 0.12 for the faint sample. The error on the galaxy bias have been
obtained propagating the errors in the correlation function to the fitted
parameters. This redshift evolution for the galaxy bias is in agreement with
theoretical expectations for a galaxy population with MB-5\log h < -21.0. We
note that biasing is derived from the galaxy clustering relative to a model for
the mass fluctuations. We investigate the quality of the DES photometric
redshifts and find that the outlier fraction can be reduced using a comparison
between template fitting and neural network, or using a random forest
algorithm
The quantum critical point in CeRhIn_5: a resistivity study
The pressure--temperature phase diagram of CeRhIn_5 has been studied under
high magnetic field by resistivity measurements. Clear signatures of a quantum
critical point has been found at a critical pressure of p_c = 2.5 GPa. The
field induced magnetic state in the superconducting state is stable up to the
highest field. At p_c the antiferromagnetic ground-state under high magnetic
field collapses very rapidly. Clear signatures of p_c are the strong
enhancement of the resistivity in the normal state and of the inelastic
scattering term. No clear T2 temperature dependence could be found for
pressures above T_c. From the analysis of the upper critical field within a
strong coupling model we present the pressure dependence of the coupling
parameter lambda and the gyromagnetic ratio g. No signatures of a spatially
modulated order parameter could be evidenced. A detailed comparison with the
magnetic field--temperature phase diagram of CeCoIn_5 is given. The comparison
between CeRhIn_5 and CeCoIn_5 points out the importance to take into account
the field dependence of the effective mass in the calculation of the
superconducting upper critical field H_c2. It suggests also that when the
magnetic critical field H_(0) becomes lower than H_c2 (0)$, the persistence of
a superconducting pseudo-gap may stick the antiferromagnetism to H_c2 (0).Comment: 15 pages, 20 figures, to be published in J. Phys. Soc. Jp
Planck intermediate results. XXIX. All-sky dust modelling with Planck, IRAS, and WISE observations
We present all-sky modelling of the high resolution Planck, IRAS, and WISE
infrared (IR) observations using the physical dust model presented by Draine
and Li in 2007 (DL). We study the performance and results of this model, and
discuss implications for future dust modelling. The present work extends the DL
dust modelling carried out on nearby galaxies using Herschel and Spitzer data
to Galactic dust emission. We employ the DL dust model to generate maps of the
dust mass surface density, the optical extinction Av, and the starlight
intensity parametrized by Umin. The DL model reproduces the observed spectral
energy distribution (SED) satisfactorily over most of the sky, with small
deviations in the inner Galactic disk and in low ecliptic latitude areas. We
compare the DL optical extinction Av for the diffuse interstellar medium with
optical estimates for 2 10^5 quasi-stellar objects (QSOs) observed in the Sloan
digital sky survey. The DL Av estimates are larger than those determined
towards QSOs by a factor of about 2, which depends on Umin. The DL fitting
parameter Umin, effectively determined by the wavelength where the SED peaks,
appears to trace variations in the far-IR opacity of the dust grains per unit
Av, and not only in the starlight intensity. To circumvent the model
deficiency, we propose an empirical renormalization of the DL Av estimate,
dependent of Umin, which compensates for the systematic differences found with
QSO observations. This renormalization also brings into agreement the DL Av
estimates with those derived for molecular clouds from the near-IR colours of
stars in the 2 micron all sky survey. The DL model and the QSOs data are used
to compress the spectral information in the Planck and IRAS observations for
the diffuse ISM to a family of 20 SEDs normalized per Av, parameterized by
Umin, which may be used to test and empirically calibrate dust models.Comment: Final version that has appeared in A&
Planck intermediate results. XLI. A map of lensing-induced B-modes
The secondary cosmic microwave background (CMB) -modes stem from the
post-decoupling distortion of the polarization -modes due to the
gravitational lensing effect of large-scale structures. These lensing-induced
-modes constitute both a valuable probe of the dark matter distribution and
an important contaminant for the extraction of the primary CMB -modes from
inflation. Planck provides accurate nearly all-sky measurements of both the
polarization -modes and the integrated mass distribution via the
reconstruction of the CMB lensing potential. By combining these two data
products, we have produced an all-sky template map of the lensing-induced
-modes using a real-space algorithm that minimizes the impact of sky masks.
The cross-correlation of this template with an observed (primordial and
secondary) -mode map can be used to measure the lensing -mode power
spectrum at multipoles up to . In particular, when cross-correlating with
the -mode contribution directly derived from the Planck polarization maps,
we obtain lensing-induced -mode power spectrum measurement at a significance
level of , which agrees with the theoretical expectation derived
from the Planck best-fit CDM model. This unique nearly all-sky
secondary -mode template, which includes the lensing-induced information
from intermediate to small () angular scales, is
delivered as part of the Planck 2015 public data release. It will be
particularly useful for experiments searching for primordial -modes, such as
BICEP2/Keck Array or LiteBIRD, since it will enable an estimate to be made of
the lensing-induced contribution to the measured total CMB -modes.Comment: 20 pages, 12 figures; Accepted for publication in A&A; The B-mode map
is part of the PR2-2015 Cosmology Products; available as Lensing Products in
the Planck Legacy Archive http://pla.esac.esa.int/pla/#cosmology; and
described in the 'Explanatory Supplement'
https://wiki.cosmos.esa.int/planckpla2015/index.php/Specially_processed_maps#2015_Lensing-induced_B-mode_ma
Emergent Geometry and Gravity from Matrix Models: an Introduction
A introductory review to emergent noncommutative gravity within Yang-Mills
Matrix models is presented. Space-time is described as a noncommutative brane
solution of the matrix model, i.e. as submanifold of \R^D. Fields and matter on
the brane arise as fluctuations of the bosonic resp. fermionic matrices around
such a background, and couple to an effective metric interpreted in terms of
gravity. Suitable tools are provided for the description of the effective
geometry in the semi-classical limit. The relation to noncommutative gauge
theory and the role of UV/IR mixing is explained. Several types of geometries
are identified, in particular "harmonic" and "Einstein" type of solutions. The
physics of the harmonic branch is discussed in some detail, emphasizing the
non-standard role of vacuum energy. This may provide new approach to some of
the big puzzles in this context. The IKKT model with D=10 and close relatives
are singled out as promising candidates for a quantum theory of fundamental
interactions including gravity.Comment: Invited topical review for Classical and Quantum Gravity. 57 pages, 5
figures. V2,V3: minor corrections and improvements. V4,V5: some improvements,
refs adde
- …
