11 research outputs found

    Stéréologie d'objets 3-D à partir de leurs projections 2-D. Application aux processus de cristallisation.

    No full text
    National audienceL'objectif de cet article est de présenter une nouvelle mé- thode de stéréologie projective permettant d'estimer la taille et la forme d'un objet convexe 3-D à partir des ses projections 2-D. Dans ce but, des mesures géométriques et morphométriques des ombres projetées de l'objet 3-D sont tout d'abord réalisées. Ensuite, les valeurs des paramètres de taille et de forme de l'objet 3-D sont estimées par la méthode du maximum de vraisemblance. Après divers tests de validation et de comparaison sur des objets convexes 3-D synthétiques, la méthode proposée est appliquée sur un cas réel pour estimer la distribution volumique 3-D de particules durant un processus de cristallisation

    Navigating the nuances: comparative analysis and hyperparameter optimisation of neural architectures on contrast-enhanced MRI for liver and liver tumour segmentation

    No full text
    Abstract In medical imaging, accurate segmentation is crucial to improving diagnosis, treatment, or both. However, navigating the multitude of available architectures for automatic segmentation can be overwhelming, making it challenging to determine the appropriate type of architecture and tune the most crucial parameters during dataset optimisation. To address this problem, we examined and refined seven distinct architectures for segmenting the liver, as well as liver tumours, with a restricted training collection of 60 3D contrast-enhanced magnetic resonance images (CE-MRI) from the ATLAS dataset. Included in these architectures are convolutional neural networks (CNNs), transformers, and hybrid CNN/transformer architectures. Bayesian search techniques were used for hyperparameter tuning to hasten convergence to the optimal parameter mixes while also minimising the number of trained models. It was unexpected that hybrid models, which typically exhibit superior performance on larger datasets, would exhibit comparable performance to CNNs. The optimisation of parameters contributed to better segmentations, resulting in an average increase of 1.7% and 5.0% in liver and tumour segmentation Dice coefficients, respectively. In conclusion, the findings of this study indicate that hybrid CNN/transformer architectures may serve as a practical substitute for CNNs even in small datasets. This underscores the significance of hyperparameter optimisation

    Segmentation of 4D Flow MRI: Comparison between 3D Deep Learning and Velocity-Based Level Sets

    No full text
    A thoracic aortic aneurysm is an abnormal dilatation of the aorta that can progress and lead to rupture. The decision to conduct surgery is made by considering the maximum diameter, but it is now well known that this metric alone is not completely reliable. The advent of 4D flow magnetic resonance imaging has allowed for the calculation of new biomarkers for the study of aortic diseases, such as wall shear stress. However, the calculation of these biomarkers requires the precise segmentation of the aorta during all phases of the cardiac cycle. The objective of this work was to compare two different methods for automatically segmenting the thoracic aorta in the systolic phase using 4D flow MRI. The first method is based on a level set framework and uses the velocity field in addition to 3D phase contrast magnetic resonance imaging. The second method is a U-Net-like approach that is only applied to magnitude images from 4D flow MRI. The used dataset was composed of 36 exams from different patients, with ground truth data for the systolic phase of the cardiac cycle. The comparison was performed based on selected metrics, such as the Dice similarity coefficient (DSC) and Hausdorf distance (HD), for the whole aorta and also three aortic regions. Wall shear stress was also assessed and the maximum wall shear stress values were used for comparison. The U-Net-based approach provided statistically better results for the 3D segmentation of the aorta, with a DSC of 0.92 ± 0.02 vs. 0.86 ± 0.5 and an HD of 21.49 ± 24.8 mm vs. 35.79 ± 31.33 mm for the whole aorta. The absolute difference between the wall shear stress and ground truth slightly favored the level set method, but not significantly (0.754 ± 1.07 Pa vs. 0.737 ± 0.79 Pa). The results showed that the deep learning-based method should be considered for the segmentation of all time steps in order to evaluate biomarkers based on 4D flow MRI

    Comparison of In-Vivo and Ex-Vivo Ascending Aorta Elastic Properties through Automatic Deep Learning Segmentation of Cine-MRI and Biomechanical Testing

    No full text
    Ascending aortic aneurysm is a pathology that is important to be supervised and treated. During the years the aorta dilates, it becomes stiff, and its elastic properties decrease. In some cases, the aortic wall can rupture leading to aortic dissection with a high mortality rate. The main reference standard to measure when the patient needs to undertake surgery is the aortic diameter. However, the aortic diameter was shown not to be sufficient to predict aortic dissection, implying other characteristics should be considered. Therefore, the main objective of this work is to assess in-vivo the elastic properties of four different quadrants of the ascending aorta and compare the results with equivalent properties obtained ex-vivo. The database consists of 73 cine-MRI sequences of thoracic aorta acquired in axial orientation at the level of the pulmonary trunk. All the patients have dilated aorta and surgery is required. The exams were acquired just prior to surgery, each consisting of 30 slices on average across the cardiac cycle. Multiple deep learning architectures have been explored with different hyperparameters and settings to automatically segment the contour of the aorta on each image and then automatically calculate the aortic compliance. A semantic segmentation U-Net network outperforms the rest explored networks with a Dice score of 98.09% (±0.96%) and a Hausdorff distance of 4.88 mm (±1.70 mm). Local aortic compliance and local aortic wall strain were calculated from the segmented surfaces for each quadrant and then compared with elastic properties obtained ex-vivo. Good agreement was observed between Young’s modulus and in-vivo strain. Our results suggest that the lateral and posterior quadrants are the stiffest. In contrast, the medial and anterior quadrants have the lowest aortic stiffness. The in-vivo stiffness tendency agrees with the values obtained ex-vivo. We can conclude that our automatic segmentation method is robust and compatible with clinical practice (thanks to a graphical user interface), while the in-vivo elastic properties are reliable and compatible with the ex-vivo ones

    Impact of contouring methods on pre-treatment and post-treatment dosimetry for the prediction of tumor control and survival in HCC patients treated with selective internal radiation therapy

    No full text
    International audienceAbstract Introduction The aim of this study was to evaluate the impact of the contouring methods on dose metrics and their predictive value on tumor control and survival, in both situations of pre-treatment and post-treatment dosimetry, for patients with advanced HCC treated with SIRT. Methods Forty-eight patients who underwent SIRT between 2012 and 2020 were retrospectively included in this study. Target volumes were delineated using two methods: MRI-based contours manually drawn by a radiologist and then registered on SPECT/CT and PET/CT via deformable registration (Pre-C MRI and Post-C MRI ), 99m Tc-MAA-SPECT and 90 Y-microspheres-PET 10% threshold contouring (Pre-C SPECT and Post-C PET ). The mean absorbed dose (Dm) and the minimal absorbed dose delivered to 70% of the tumor volume (D70) were evaluated with both contouring methods; the tumor-to-normal liver uptake ratio (TNR) was evaluated with MRI-based contours only. Tumor response was assessed using the mRECIST criteria on the follow-up MRIs. Results No significant differences were found for Dm and TNR between pre- and post-treatment. TNR evaluated with radiologic contours (Pre-C MRI and Post-C MRI ) were predictive of tumor control at 6 months on pre- and post-treatment dosimetry (OR 5.9 and 7.1, respectively; p = 0.02 and 0.01). All dose metrics determined with both methods were predictive of overall survival (OS) on pre-treatment dosimetry, but only Dm with MRI-based contours was predictive of OS on post-treatment images with a median of 23 months for patients with a supramedian Dm versus 14 months for the others ( p = 0.04). Conclusion In advanced HCC treated with SIRT, Dm and TNR determined with radiologic contours were predictive of tumor control and OS. This study shows that a rigorous clinical workflow (radiologic contours + registration on scintigraphic images) is feasible and should be prospectively considered for improving therapeutic strategy
    corecore