25 research outputs found

    Gluing characteristics of Papua New Guinea timber species for various non-structural applications

    Get PDF
    Papua New Guinea (PNG) has abundant natural forest resources but there are many constraints which need to be addressed to support the development of competitive value-added wood industries. There is a need to develop knowledge and capacity in wood science and processing technologies which support successful domestic value-adding wood processing enterprises. A comprehensive testing program has been developed to assess the glue‐bond strength and performance of selected commercial PNG timber species in various climatic conditions to simulate service conditions in potential market destinations. Two criteria namely shear strength and wood failure have been used to determine if a species can meet the minimum requirements for either dry use or wet use applications. The performance of 24 different PNG commercial timber species has been assessed using a one-component cross-linking polyvinyl acetate emulsion adhesive. The bondability of the selected species has been carefully estimated considering the wood density and wood moisture content for the strength and durability in dry- and wet-use conditions. The testing results show that as the wood density as a wood property factor and moisture content as a service condition factor increase, high shear strength with high wood failure become more difficult to achieve consistently. The highest shear strength and wood failure results were achieved by softwood plantation species and low-density hardwood species. Based on the testing results, the selected species have been classified into bondability classes (bond very well, bond well, bond with difficulty, very difficult to bond). &nbsp

    Wood planing properties of Australian plantation-grown Eucalypts

    Get PDF
    Planing properties of seven Australian plantation-grown eucalypts were evaluated to provide recommendations on how these species should be machined and considered for the manufacture of high quality furniture and furnishings. The surface quality produced for each species was evaluated using eight planing conditions. All species performed well producing equivalent or better results than mature traditional furniture species, and could be used for high value furniture manufacturing. Tungsten carbide cutters produced better results than high-speed steel for most eucalypts and the grinding of a small chip-breaker usually produced improving results as the size of the chip-breaker was reduced. Grain orientation did not affect the planed surfaces for some species but planing with the grain usually produced better surface. Recovery and presence of torn grain could not be related to the wood density

    Wood machining properties of Australian plantation-grown Eucalypts

    Get PDF
    This study assessed the moulding, drilling, turning, sanding, and routing properties of seven plantation-grown hardwood species from southeast Australia to evaluate their potential as a resource for the manufacture of high quality furniture and furnishings. Eucalyptus grandis, Eucalyptus saligna, Corymbia maculata, Eucalyptus camaldulensis, Eucalyptus sideroxylon, Eucalyptus cladocalyx, and Eucalyptus globulus were machined using different tools, and the surface quality obtained was visually graded. A sanding sequence of 100-150 grit produced satisfactory surfaces for furniture manufacturing for most studied species. Usually, a feeding direction against the rotational direction of the tool showed best results and reduced incidence of corner breakout when routing. Overall, high-density plantationgrown Australian hardwood species performed well during machining trials with the use of appropriate parameters and cutting tools allowing overcoming some typical processing difficulties for some species. The data obtained within this study will allow optimising the machining process of plantation-grown wood in Australia and increase value from the current plantation resource

    Assessment of physical and mechanical properties of papua new guinea timber species

    Get PDF
    A comprehensive testing program has been developed to assess different physical and mechanical properties of 26 commercial and lesser-known PNG species from secondary and plantation forests. The impact of log position in a tree on the mechanical properties has also been assessed to optimize the utilization of timbers along the value chain. The results showed that stiffness and bending strength tend to decrease or remain unchanged along the stem. Shear strength and Janka hardness displayed a similar trend to a lesser extent where the position in the tree had a limited impact on compression strength properties. Thus, segregating based on log position can be of interest where desired mechanical properties and costs associated with segregating justify optimum mechanical properties for the intended end use. The properties of selected species from plantations and regrowth forests were generally lower than those found in the literature for timbers from old-growth forests. The size of specimens tested, the amount and provenance of tested material, and some adaptive traits for tropical tree species are some factors potentially explaining observed differences. However, a comparison with recent studies tends to confirm the overall reduction of physical and mechanical properties when compared with old-growth forests timbers

    Wood planing properties of Australian plantation-grown Eucalypts

    Get PDF
    Planing properties of seven Australian plantation-grown eucalypts were evaluated to provide recommendations on how these species should be machined and considered for the manufacture of high quality furniture and furnishings. The surface quality produced for each species was evaluated using eight planing conditions. All species performed well producing equivalent or better results than mature traditional furniture species, and could be used for high value furniture manufacturing. Tungsten carbide cutters produced better results than high-speed steel for most eucalypts and the grinding of a small chip-breaker usually produced improving results as the size of the chip-breaker was reduced. Grain orientation did not affect the planed surfaces for some species but planing with the grain usually produced better surface. Recovery and presence of torn grain could not be related to the wood density

    Wood machining properties of Australian plantation-grown Eucalypts

    No full text
    This study assessed the moulding, drilling, turning, sanding, and routing properties of seven plantation-grown hardwood species from southeast Australia to evaluate their potential as a resource for the manufacture of high quality furniture and furnishings. Eucalyptus grandis, Eucalyptus saligna, Corymbia maculata, Eucalyptus camaldulensis, Eucalyptus sideroxylon, Eucalyptus cladocalyx, and Eucalyptus globulus were machined using different tools, and the surface quality obtained was visually graded. A sanding sequence of 100-150 grit produced satisfactory surfaces for furniture manufacturing for most studied species. Usually, a feeding direction against the rotational direction of the tool showed best results and reduced incidence of corner breakout when routing. Overall, high-density plantationgrown Australian hardwood species performed well during machining trials with the use of appropriate parameters and cutting tools allowing overcoming some typical processing difficulties for some species. The data obtained within this study will allow optimising the machining process of plantation-grown wood in Australia and increase value from the current plantation resource

    Assessing the potential of wood welding for Australian eucalypts and tropical species

    Get PDF
    International audienceThe wood welding potential of Australian and tropical species has been investigated. Optimized parameters for Eucalyptus saligna, Eucalyptus pilularis, Corymbia maculata, Ochroma pyramidale, and Tectona grandis were determined using a standard tensile strength test. The results confirmed the importance of density in the optimisation process. The grain direction also proved to have a significant impact on the welded joint strength of species featuring large wood rays or vessels in diagonal and/or radial pattern. Wood welding could therefore be an alternative for such species where gluing is required

    Optimization of Wood Welding Parameters for Australian Hardwood Species

    Get PDF
    Optimal linear wood welding parameters along the end-grain-to-end-grain faces were determined for Eucalyptus saligna, Eucalyptus pilularis, and Corymbia maculata. Joints made using Eucalyptus saligna showed a significant interaction between welding time (WT), amplitude (WA), and pressure (WP). A preheating phase of 3 s at 0.4 MPa WP and 0.75 mm WA coupled with a WT of 2 s at 2.0 MPa WP and 1.5 mm WA provided the best shear strength results of 5.1 MPa. Joints made using Eucalyptus pilularis and Corymbia maculata snapped once the holding pressure was removed, suggesting that end-grain-to-end-grain welded fibers cannot withstand the thermal stresses generated when the surface to be welded is too small (e.g., 13.5 cm2). However, grain orientation had a significant effect on the weld mechanical properties, as very strong edge-grain-to-edge-grain joints were produced with Eucalyptus pilularis and Corymbia maculata (9.5 and 6.2 MPa, respectively). The joints made of Eucalyptus saligna also showed significant improvement (7.3 MPa). Energy efficient combinations were usually those involving low WA and short WT, as WP had a marginal effect on energy consumption during the welding process

    Assessment of physical and mechanical properties of Papua new Guinea timber species

    No full text
    A comprehensive testing program has been developed to assess different physical and mechanical properties of 26 commercial and lesser-known Papua New Guinea species from secondary and plantation forests. The impact of log position in a tree on the mechanical properties has also been assessed to optimize the utilization of timbers along the value chain. The results showed that stiffness and bending strength tend to decrease or remain unchanged along the stem. Shear strength and Janka hardness displayed a similar trend to a lesser extent where the position in the tree had a limited impact on compression strength properties. Thus, segregating based on log position can be of interest where desired mechanical properties and costs associated with segregating justify optimum mechanical properties for the intended end use. The properties of selected species from plantations and regrowth forests were generally lower than those found in the literature for timbers from old-growth forests. The size of specimens tested, the amount and provenance of tested material, and some adaptive traits for tropical tree species are some factors potentially explaining observed differences. However, a comparison with recent studies tends to confirm the overall reduction of physical and mechanical properties when compared with old-growth forests timbers

    Mechanical properties of Papua New Guinea balsa wood

    No full text
    The mechanical properties of plantation-grown balsa wood from Papua New Guinea (PNG) were determined according to American Society for Testing and Materials D143-09. Static bending, hardness, compression parallel and perpendicular to grain, and shear parallel to grain tests were performed on kiln-dried specimens segregated into the three international density classes (80 ≀ 120, 120 ≀ 180 and 180 ≀ 220 kg/m3). The literature states balsa with a density between 120 and 180 kg/m3 has the most commercial value in contemporary markets. The results presented in this study indicate that balsa with a density around 150 kg/m3 can have superior strength properties to balsa with a higher and lower density (this was most evident in the compression perpendicular and shear tests). Specimen moisture content and air dry density were calculated to identify elements which may affect the strength properties of balsa. Generally, the greater the density of a specimen, the greater the strength. However, unusual patterns were noted in this study where density had little impact on the increase in strength (particularly in the hardness and shear tests). Average strength results for the medium density class of PNG-grown balsa were: modulus of elasticity 2037 MPa, modulus of rupture 16.6 MPa, hardness tangential surface 307 N, hardness radial surface 291 N, hardness axial surface 426 N, compression parallel 9.2 MPa, compression perpendicular 1.1 MPa and shear 1.9 MPa
    corecore