9,059 research outputs found
Estimating the large-scale angular power spectrum in the presence of systematics: a case study of Sloan Digital Sky Survey quasars
The angular power spectrum is a powerful statistic for analysing cosmological
signals imprinted in the clustering of matter. However, current galaxy and
quasar surveys cover limited portions of the sky, and are contaminated by
systematics that can mimic cosmological signatures and jeopardise the
interpretation of the measured power spectra. We provide a framework for
obtaining unbiased estimates of the angular power spectra of large-scale
structure surveys at the largest scales using quadratic estimators. The method
is tested by analysing the 600 CMASS mock catalogues constructed by Manera et
al. (2013) for the Baryon Oscillation Spectroscopic Survey (BOSS). We then
consider the Richards et al. (2009) catalogue of photometric quasars from the
Sixth Data Release (DR6) of the Sloan Digital Sky Survey (SDSS), which is known
to include significant stellar contamination and systematic uncertainties.
Focusing on the sample of ultraviolet-excess (UVX) sources, we show that the
excess clustering power present on the largest-scales can be largely mitigated
by making use of improved sky masks and projecting out the modes corresponding
to the principal systematics. In particular, we find that the sample of objects
with photometric redshift exhibits no evidence of
contamination when using our most conservative mask and mode projection. This
indicates that any residual systematics are well within the statistical
uncertainties. We conclude that, using our approach, this sample can be used
for cosmological studies.Comment: 18 pages, 18 figures. Version accepted by MNRA
Metal Mixing and Ejection in Dwarf Galaxies is Dependent on Nucleosynthetic Source
Using a high resolution simulation of an isolated dwarf galaxy, accounting
for multi-channel stellar feedback and chemical evolution on a star-by-star
basis, we investigate how each of 15 metal species are distributed within our
multi-phase interstellar medium (ISM) and ejected from our galaxy by galactic
winds. For the first time, we demonstrate that the mass fraction probability
distribution functions (PDFs) of individual metal species in the ISM are well
described by a piecewise log-normal and power-law distribution. The PDF
properties vary within each ISM phase. Hot gas is dominated by recent
enrichment, with a significant power-law tail to high metal fractions, while
cold gas is predominately log-normal. In addition, elements dominated by
asymptotic giant branch (AGB) wind enrichment (e.g. N and Ba) mix less
efficiently than elements dominated by supernova enrichment (e.g.
elements and Fe). This result is driven by the differences in source energetics
and source locations, particularly the higher chance compared to massive stars
for AGB stars to eject material into cold gas. Nearly all of the produced
metals are ejected from the galaxy (only 4% are retained), but over 20% of
metals dominated by AGB enrichment are retained. In dwarf galaxies, therefore,
elements synthesized predominately through AGB winds should be both
overabundant and have a larger spread compared to elements synthesized in
either core collapse or Type Ia supernovae. We discuss the observational
implications of these results, their potential use in developing improved
models of galactic chemical evolution, and their generalization to more massive
galaxies.Comment: 18 pages, 7 figures (plus 2 page, 2 figure appendix). Accepted to Ap
Temporally resolved second-order photon correlations of exciton-polariton Bose-Einstein condensate formation
Second-order time correlation measurements with a temporal resolution better
than 3 ps were performed on a CdTe microcavity where spontaneous Bose-Einstein
condensation is observed. After the laser pulse, the nonresonantly excited
thermal polariton population relaxes into a coherent polariton condensate.
Photon statistics of the light emitted by the microcavity evidences a clear
phase transition from the thermal state to a coherent state, which occurs
within 3.2 ps after the onset of stimulated scattering. Following this very
fast transition, we show that the emission possesses a very high coherence that
persists for more than 100 ps after the build-up of the condensate.Comment: 4 pages, 3 figure
High-performance thermal emitters based on laser engineered metal surfaces
Effective thermal management is of paramount importance for all high-temperature
systems operating under vacuum. Cooling of such systems relies mainly on radiative heat transfer
requiring high spectral emissivity of surfaces, which is strongly affected by the surface condition.
Pulsed laser structuring of stainless steel in air resulted in the spectral hemispherical emissivity
values exceeding 0.95 in the 2.5â15 ”m spectral region. The effects of surface oxidation and
topography on spectral emissivity as well as high temperature stability of the surface structures
were examined. High performance stability of the laser textured surfaces was confirmed after
thermal aging studies at 320°C for 96 hour
Helical states of nonlocally interacting molecules and their linear stability: geometric approach
The equations for strands of rigid charge configurations interacting
nonlocally are formulated on the special Euclidean group, SE(3), which
naturally generates helical conformations. Helical stationary shapes are found
by minimizing the energy for rigid charge configurations positioned along an
infinitely long molecule with charges that are off-axis. The classical energy
landscape for such a molecule is complex with a large number of energy minima,
even when limited to helical shapes. The question of linear stability and
selection of stationary shapes is studied using an SE(3) method that naturally
accounts for the helical geometry. We investigate the linear stability of a
general helical polymer that possesses torque-inducing non-local
self-interactions and find the exact dispersion relation for the stability of
the helical shapes with an arbitrary interaction potential. We explicitly
determine the linearization operators and compute the numerical stability for
the particular example of a linear polymer comprising a flexible rod with a
repeated configuration of two equal and opposite off-axis charges, thereby
showing that even in this simple case the non-local terms can induce
instability that leads to the rod assuming helical shapes.Comment: 34 pages, 9 figure
Surface spin magnetism controls the polarized exciton emission from CdSe nanoplatelets
The surface of nominally diamagnetic colloidal CdSe nanoplatelets can
demonstrate paramagnetism owing to the uncompensated spins of dangling bonds
(DBSs). We reveal that by optical spectroscopy in high magnetic fields up to 15
Tesla using the exciton spin as probe of the surface magnetism. The strongly
nonlinear magnetic field dependence of the circular polarization of the exciton
emission is determined by the DBS and exciton spin polarization as well as by
the spin-dependent recombination of dark excitons. The sign of the exciton-DBS
exchange interaction can be adjusted by the nanoplatelet growth conditions
Universal Fluctuation of the Hall Conductance in the Random Magnetic Field
We show that the RMS fluctuation of the antisymmetric part of the Hall
conductance of a planar mesoscopic metal in a random magnetic field with zero
average is universal, of the order of , independent of the amplitude of
the random magnetic field and the diffusion coefficient even in the weak field
limit. This quantity is exactly zero in the case of ordinary scalar disorder.
We propose an experiment to measure this surprising effect, and also discuss
its implications on the localization physics of this system. Our result applies
to some other systems with broken time-reversal ({\bf T}) symmetry.Comment: 4 pages, Revtex 3.0; added the paragraph regarding applicability to
other systems with broken T-invariance, misc. minor change
Asymptotically maximal families of hypersurfaces in toric varieties
A real algebraic variety is maximal (with respect to the Smith-Thom
inequality) if the sum of the Betti numbers (with coefficients)
of the real part of the variety is equal to the sum of Betti numbers of its
complex part. We prove that there exist polytopes that are not Newton polytopes
of any maximal hypersurface in the corresponding toric variety. On the other
hand we show that for any polytope there are families of hypersurfaces
with the Newton polytopes that are
asymptotically maximal when tends to infinity. We also show that
these results generalize to complete intersections.Comment: 18 pages, 1 figur
- âŠ