11,287 research outputs found

    Simulations of particle acceleration beyond the classical synchrotron burnoff limit in magnetic reconnection: An explanation of the Crab flares

    Full text link
    It is generally accepted that astrophysical sources cannot emit synchrotron radiation above 160 MeV in their rest frame. This limit is given by the balance between the accelerating electric force and the radiation reaction force acting on the electrons. The discovery of synchrotron gamma-ray flares in the Crab Nebula, well above this limit, challenges this classical picture of particle acceleration. To overcome this limit, particles must accelerate in a region of high electric field and low magnetic field. This is possible only with a non-ideal magnetohydrodynamic process, like magnetic reconnection. We present the first numerical evidence of particle acceleration beyond the synchrotron burnoff limit, using a set of 2D particle-in-cell simulations of ultra-relativistic pair plasma reconnection. We use a new code, Zeltron, that includes self-consistently the radiation reaction force in the equation of motion of the particles. We demonstrate that the most energetic particles move back and forth across the reconnection layer, following relativistic Speiser orbits. These particles then radiate >160 MeV synchrotron radiation rapidly, within a fraction of a full gyration, after they exit the layer. Our analysis shows that the high-energy synchrotron flux is highly variable in time because of the strong anisotropy and inhomogeneity of the energetic particles. We discover a robust positive correlation between the flux and the cut-off energy of the emitted radiation, mimicking the effect of relativistic Doppler amplification. A strong guide field quenches the emission of >160 MeV synchrotron radiation. Our results are consistent with the observed properties of the Crab flares, supporting the reconnection scenario.Comment: 15 pages, 16 figures, Accepted for publication in The Astrophysical Journa

    Suppression weakens unwanted memories via a sustained reduction of neural reactivation

    Get PDF
    Aversive events often turn into intrusive memories. However, prior evidence indicates that these memories can be forgotten via a mechanism of retrieval suppression. Here, we test the hypothesis that suppression weakens memories by deteriorating their neural representations. This deterioration, in turn, would hinder their subsequent reactivation and thus impoverish the vividness with which they can be recalled. In an fMRI study, participants repeatedly suppressed memories of aversive scenes. As predicted, this process rendered the memories less vivid. Using a pattern classifier, we observed that it did diminish the reactivation of scene information both globally across the grey matter and locally in the parahippocampal cortices. Moreover, in the right parahippocampal cortex, a stronger decline in vividness was associated with a greater reduction in generic reactivation of scene information and in the specific reinstatement of unique memory representations. These results support the hypothesis that suppression deteriorates memories by compromising their neural representations

    Suppression weakens unwanted memories via a sustained reduction of neural reactivation

    Get PDF
    Aversive events sometimes turn into intrusive memories. However, prior evidence indicates that such memories can be controlled via a mechanism of retrieval suppression. Here, we test the hypothesis that suppression exerts a sustained influence on memories by deteriorating their neural representations. This deterioration, in turn, would hinder their subsequent reactivation and thus impoverish the vividness with which they can be recalled. In an fMRI study, participants repeatedly suppressed memories of aversive scenes. As predicted, this process rendered the memories less vivid. Using a pattern classifier, we observed that suppression diminished the neural reactivation of scene information both globally across the brain and locally in the parahippocampal cortices. Moreover, the decline in vividness was associated with reduced reinstatement of unique memory representations in right parahippocampal cortex. These results support the hypothesis that suppression weakens memories by causing a sustained reduction in the potential to reactivate their neural representations

    Light Neutralinos and WIMP direct searches

    Get PDF
    The predictions of our previous analyses about possible low-mass (lower than 50 GeV) relic neutralinos are discussed in the light of the most recent results from WIMP direct detection experiments. It is proved that these light neutralinos are quite compatible with the new annual-modulation data of the DAMA Collaboration; our theoretical predictions are also compared with the upper bounds of the CDMS and EDELWEISS Collaborations.Comment: 4 pages, 1 figures, typeset with ReVTeX4. The paper may also be found at http://www.to.infn.it/~fornengo/papers/note.ps.gz or through http://www.to.infn.it/astropart/index.htm

    Magnetic structure of the antiferromagnetic half-Heusler compound NdBiPt

    Full text link
    We present results of single crystal neutron diffraction experiments on the rare-earth, half-Heusler antiferromagnet (AFM) NdBiPt. This compound exhibits an AFM phase transition at TN=2.18T_{\mathrm N}=2.18~K with an ordered moment of 1.78(9)1.78(9)~μB\mu_{\mathrm B} per Nd atom. The magnetic moments are aligned along the [001][001]-direction, arranged in a type-I AFM structure with ferromagnetic planes, alternating antiferromagnetically along a propagation vector τ\tau of (100)(100). The RRBiPt (RR= Ce-Lu) family of materials has been proposed as candidates of a new family of antiferromagnetic topological insulators (AFTI) with magnetic space group that corresponds to a type-II AFM structure where ferromagnetic sheets are stacked along the space diagonal. The resolved structure makes it unlikely, that NdBiPt qualifies as an AFTI.Comment: As resubmitted to PRB, corrected typos and changed symbols in Fig.

    High density InAlAs/GaAlAs quantum dots for non-linear optics in microcavities

    Get PDF
    Structural and optical properties of InAlAs/GaAlAs quantum dots grown by molecular beam epitaxy are studied using transmission electron microscopy, temperature- and time resolvedphotoluminescence. The control of the recombination lifetime (50 ps – 1.25 ns), and of the dot density (5.10−8 – 2.1011 cm−3) strongly suggest that these material systems can find wide applications in opto-electronic devices as focusing non linear dispersive materials as well as fast saturable absorbers

    Optimization of Single-Sided Charge-Sharing Strip Detectors

    Get PDF
    Simulation of the charge sharing properties of single-sided CZT strip detectors with small anode pads are presented. The effect of initial event size, carrier repulsion, diffusion, drift, trapping and detrapping are considered. These simulations indicate that such a detector with a 150 µm pitch will provide good charge sharing between neighboring pads. This is supported by a comparison of simulations and measurements for a similar detector with a coarser pitch of 225 µm that could not provide sufficient sharing. The performance of such a detector used as a gamma-ray imager is discussed
    • …
    corecore