1,735 research outputs found

    Natural thermoluminescence of Antarctic meteorites and related studies

    Get PDF
    The natural thermoluminescence (TL) laboratory's primary purpose is to provide data on newly recovered Antarctic meteorites that can be included in discovery announcements and to investigate the scientific implications of the data. Natural TL levels of meteorites are indicators of recent thermal history and terrestrial history, and the data can be used to study the orbital/radiation history of groups of meteorites (e.g., H chondrites) or to study the processes leading to the concentration of meteorites at certain sites in Antarctica. An important application of these data is the identification of fragments, or "pairs" of meteorites produced during atmospheric passage or during terrestrial weathering. Thermoluminescence data are particularly useful for pairing within the most common meteorite classes, which typically exhibit very limited petrographic and chemical diversity. Although not originally part of the laboratory's objectives, TL data are also useful in the identification and classification of petrographically or mineralogically unusual meteorites, including unequilibrated ordinary chondrites and some basaltic achondrites. In support of its primary mission, the laboratory also engages in TL studies of modern falls, finds from hot deserts, and terrestrial analogs and conducts detailed studies of the TL properties of certain classes of meteorites. These studies include the measurement of TL profiles in meteorites, the determination of TL levels of finds from the Sahara and the Nullarbor region of Australia, and comparison of TL data to other indicators of irradiation or terrestrial history, such as cosmogenic noble gas and radionuclide abundances. Our current work can be divided into five subcategories, (a) TL survey of Antarctic meteorites, (b) pairing and field relations of Antarctic meteorites, (c) characterization of TL systematics of meteorites, (d) comparison of natural TL and other terrestrial age indicators for Antarctic meteorites, and for meteorites from hot deserts, and (e) characterization of the TL properties of fusion crust of meteorites

    Development of a Graphical User Interface for In-Core Fuel Management Using MCODE

    Get PDF
    In the present work, a graphical user interface is developed to automate in-core fuel management using MCODE, an MCNP-ORIGEN linkage code. Data abstraction is achieved by means of five object classes that define the run, fuel assembly locations, fuel assemblies, fuel paths, and materials. The GUI and an associated fuel management wrapper were developed in Python, with the PyQt extension being used for GUI-specific features. To validate the fuel management wrapper, a model of the MIT Reactor core was used to run an equilibrium core. The results show that the wrapper performs reliably. Together, these tools will help the staff at the MITR perform in-core fuel management calculations quickly and with a higher level of detail than that previously possible

    Chondrule formation, metamorphism, brecciation, an important new primary chondrule group, and the classification of chondrules

    Get PDF
    The recently proposed compositional classification scheme for meteoritic chondrules divides the chondrules into groups depending on the composition of their two major phases, olivine (or pyroxene) and the mesostasis, both of which are genetically important. The scheme is here applied to discussions of three topics: the petrographic classification of Roosevelt County 075 (the least-metamorphosed H chondrite known), brecciation (an extremely important and ubiquitous process probably experienced by greater than 40% of all unequilibrated ordinary chondrites), and the group A5 chondrules in the least metamorphosed ordinary chondrites which have many similarities to chondrules in the highly metamorphosed 'equilibrated' chondrites. Since composition provides insights into both primary formation properties of the chondruies and the effects of metamorphism on the entire assemblage it is possible to determine the petrographic type of RC075 as 3.1 with unique certainty. Similarly, the near scheme can be applied to individual chondrules without knowledge of the petrographic type of the host chondrite, which makes it especially suitable for studying breccias. Finally, the new scheme has revealed the existence of chondrules not identified by previous techniques and which appear to be extremely important. Like group A1 and A2 chondrules (but unlike group B1 chondrules) the primitive group A5 chondruies did not supercool during formation, but unlike group A1 and A2 chondrules (and like group B1 chondrules) they did not suffer volatile loss and reduction during formation. It is concluded that the compositional classification scheme provides important new insights into the formation and history of chondrules and chondrites which would be overlooked by previous schemes

    Fusion Crust and the Measurement of Surface Ages of Antarctic Ordinary Chondrites

    Get PDF
    Natural thermoluminescence (TL) reflects radiation exposure and storage temperature. Meteorites generally exhibit thermoluminescence acquired during their long exposure to galactic cosmic rays in space. During atmospheric passage, temperatures are high enough to completely drain the TL, in the first mm of material under the fusion crust. We therefore refer to this surface layer as "fusion crust" although it does include some unmelted material just below the crust. When the meteorite lands on earth this drained layer will begin to build up natural TL once again due to radiation from cosmic rays and internal radionuclides. Cosmic ray annual dose is estimated to be between 0.04 and 0.06 rad/yr on the earth's surface in Antarctica while the internal radionuclides contribute only about 0.01 rad/yr. Therefore the total annual dose received by the meteorite while it is on the surface is between 0.05 and 0.07 rad/yr. If the meteorite is buried deeply in the ice it is effectively shielded from most cosmic rays and thus only internal radioactivity contributes to the annual dose

    Thermoluminescence of Japanese Antarctic ordinary chondrite collection

    Get PDF
    Thermoluminescence (TL) data for Japanese Antarctic chondrites obtained by laboratories in Arkansas and Okayama were compared and found to be in good agreement. Data for three large Antarctic chondrites were used to develop new TL pairing criteria which were found to be less restrictive than previously used. These new criteria were applied to ten equilibrated and twenty-eight unequilibrated Japanese ordinary chondrites. The petrographic subtype of the forty-three unequilibrated ordinary chondrites were determined from their TL sensitivity and nine were found to have petrographic types under 3.3 and therefore are particularly primitive samples of solar system material

    Thermoluminescence studies of ordinary chondrites in the Japanese Antarctic meteorite collection, II: New measurements for thirty type 3 ordinary chondrites

    Get PDF
    We have measured the thermoluminescence (TL) properties of thirty type 3 ordinary chondrites from the Japanese Antarctic meteorite collection. This brings to 73 the total number of Japanese type 3 ordinary chondrites examined in this way by the Arkansas-Okayama collaboration. Fifteen pairing groups were found using TL and geographical criteria. Most of the new meteorites are of petrologic types 3.6-3.9,but fourteen are of petrologic type ≤3.4. Six of the 73 meteorites (Yamato (Y)-790448,Y-793596,Y-793565,Y-791324,Y-791558,Y-74660) have petrographic types 3.5) tend to have higher induced TL peak temperature and peak width than those with low TL sensitivity, in confirmation of earlier work and consistent with peak temperature and width as well as TL sensitivity, being independent parameters of thermal history. Samples not obeying these trends (Y-75029,Y-86706,Y-793567 and Y-790787), are either heavily weathered or experienced atypical thermal histories

    Rediscovery and reclassification of the dipteran taxon Nothomicrodon Wheeler, an exclusive endoparasitoid of gyne ant larvae

    Get PDF
    The myrmecophile larva of the dipteran taxon Nothomicrodon Wheeler is rediscovered, almost a century after its original description and unique report. The systematic position of this dipteran has remained enigmatic due to the absence of reared imagos to confirm indentity. We also failed to rear imagos, but we scrutinized entire nests of the Brazilian arboreal dolichoderine ant Azteca chartifex which, combined with morphological and molecular studies, enabled us to establish beyond doubt that Nothomicrodon belongs to the Phoridae (Insecta: Diptera), not the Syrphidae where it was first placed, and that the species we studied is an endoparasitoid of the larvae of A. chartifex, exclusively attacking sexual female (gyne) larvae. Northomicrodon parasitism can exert high fitness costs to a host colony. Our discovery adds one more case to the growing number of phorid taxa known to parasitize ant larvae and suggests that many others remain to be discovered. Our findings and literature review confirm that the Phoridae is the only taxon known that parasitizes both adults and the immature stages of different castes of ants, thus threatening ants on all fronts.Peer reviewe

    On the signature of tensile blobs in the scattering function of a stretched polymer

    Full text link
    We present Monte Carlo data for a linear chain with excluded volume subjected to a uniform stretching. Simulation of long chains (up to 6000 beads) at high stretching allows us to observe the signature of tensile blobs as a crossover in the scaling behavior of the chain scattering function for wave vectors perpendicular to stretching. These results and corresponding ones in the stretching direction allow us to verify for the first time Pincus prediction on scaling inside blobs. Outside blobs, the scattering function is well described by the Debye function for a stretched ideal chain.Comment: 4 pages, 4 figures, to appear in Physical Review Letter

    Pyroxene structures, cathodoluminescence and the thermal history of the enstatite chondrites

    Get PDF
    In order to explore the thermal history of enstatite chondrites, we examined the cathodoluminescence (CL) and thermoluminescence (TL) properties of 15 EH chondrites and 21 EL chondrites, including all available petrographic types, both textural types 3-6 and mineralogical types alpha-delta. The CL properties of EL3(alpha) and EH3(alpha) chondrites are similar. Enstatite grains high in Mn and other transition metals display red CL, while enstatite with low concentrations of these elements show blue CL. A few enstatite grains with greater than 5 wt% FeO display no CL. In contrast, the luminescent properties of the metamorphosed EH chondrites are very different from those of metamorphosed EL chondrites. While the enstatites in metamorphosed EH chondrites display predominantly blue CL, the enstatites in metamorphosed EL chondrites display a distinctive magenta CL with blue and red peaks of approximately equal intensity in their spectra. The TL sensitivities of the enstatite chondrites correlate with the intensity of the blue CL and, unlike other meteorite classes, are not simply related to metamorphism. The different luminescent properties of metamorphosed EH and EL chondrites cannot readily be attributed to compositional differences. But x-ray diffraction data suggests that the enstatite in EH5(gamma),(delta) chondrites is predominantly disordered orthopyroxene, while enstatite in EL6(beta) chondrites is predominantly ordered orthopyroxene. The difference in thermal history of metamorphosed EL and EH chondrites is so marked that the use of single 'petrographic' types is misleading, and separate textural and mineralogical types are preferable. Our data confirm earlier suggestions that metamorphosed EH chondrites underwent relatively rapid cooling, and the metamorphosed EL chondrites cooled more slowly and experienced prolonged heating in the orthopyroxene field
    • …
    corecore