410 research outputs found

    CO2 as moderator for biomass gasification

    Get PDF
    Biomass can be converted into gaseous fuel by high-temperature reactions with a gasifying agent. The gasifying agent consists, in most cases, of oxygen and of a moderator, which is usually water vapour. Here we show that waste CO2 can be used instead of, or together with, water vapour to moderate the process of biomass gasification in a catalytic fluidized bed of dolomitic limestone. Such use of CO2 increased substantially the carbon and energy conversion efficiency and decreased the amount of tars in the produced gas

    Pengaruh Kompetensi Kepala Desa terhadap Keberhasilan Pembangunan Desa di Kecmatan Sahu Timur

    Full text link
    Leave from early watch result that Interest carries the wind Village at Sahu's district East mostindication stills was optimal at impersonate so still a lot of Development at silvan ones haven't prepalent.Thus, this research intent to know how Interest influence carries the wind Village to Silvan Developmentsuccess at district Sahu East.This research gets eksploratif's character, with quantitative approaching. gathered file passthrough kuesioner's instrument that is broadcast to 40 district society respondents Sahu East that assesswalking Development at each Village. Collected data then at analisis utilizes analisis's tech linearregression and analisis is simple correlation.Point out observational result that carries the wind Village still was optimal, so can't yet pushSilvan Development success.Influential Silvan head to Silvan Development success that is at Sahu's district East. Suggestedthat more Silvan head increase Interest quality so can push Village Development at Sahu's district East

    Investigation of A1g phonons in YBa2Cu3O7 by means of LAPW atomic-force calculations

    Full text link
    We report first-principles frozen-phonon calculations for the determination of the force-free geometry and the dynamical matrix of the five Raman-active A1g modes in YBa2Cu3O7. To establish the shape of the phonon potentials atomic forces are calculated within the LAPW method. Two different schemes - the local density approximation (LDA) and a generalized gradient approximation (GGA) - are employed for the treatment of electronic exchange and correlation effects. We find that in the case of LDA the resulting phonon frequencies show a deviation from experimental values of approximately -10%. Invoking GGA the frequency values are significantly improved and also the eigenvectors are in very good agreement with experimental findings.Comment: 15 page

    Characterization of tool wear when machining Alloy 718 with high pressure cooling using conventional and surface-modified WC–Co tools

    No full text
    Coolant supplied by high pressure into the cutting zone has shown the lower thermal loads on the tool when machining difficult-to-cut materials as the Alloy 718. In this study, we investigate how the combination of high-pressure cooling and tool-surface modifications can lead to further improvements regarding tool life. The general approach is to enhance the coolant-tool interaction by increasing the contact area. Therefore, we machined cooling features into flank and rake faces of commercially available cemented tungsten carbide inserts. In this way, the surface area was increased by ~ 12 %. After the cutting tests, the tools were analyzed by scanning electron microscopy combined with energy-dispersive X-ray spectroscopy. Compared with conventional tools, the tool modifications reduced the flank wear by 45 % for the investigated cutting parameters. Furthermore, we were able to significantly increase the cutting speed and feed rate without failure of the tool. The investigated surface modifications have great potential to enhance the productivity of metal cutting processes

    Design of an Agile Unmanned Combat Vehicle - A Product of the DARPA UGCV Program

    Full text link
    The unmanned ground combat vehicle (UGCV) design evolved by the SAIC team on the DARPA UGCV Program is summarized in this paper. This UGCV design provides exceptional performance against all of the program metrics and incorporates key attributes essential for high performance robotic combat vehicles. This performance includes protection against 7.62 mm threats, C130 and CH47 transportability, and the ability to accept several relevant weapons payloads, as well as advanced sensors and perception algorithms evolving from the PerceptOR program. The UGCV design incorporates a combination of technologies and design features, carefully selected through detailed trade studies, which provide optimum performance against mobility, payload, and endurance goals without sacrificing transportability, survivability, or life cycle cost. The design was optimized to maximize performance against all Category I metrics. In each case, the performance of this design was validated with detailed simulations, indicating that the vehicle exceeded the Category I metrics. Mobility metrics were analyzed using high fidelity VisualNastran vehicle models, which incorporate the suspension control algorithms and controller cycles times. DADS/Easy 5 3-D models and ADAMS simulations were also used to validate vehicle dynamics and control algorithms during obstacle negotiation

    Band-structure trend in hole-doped cuprates and correlation with Tcmax

    Full text link
    By calculation and analysis of the bare conduction bands in a large number of hole-doped high-temperature superconductors, we have identified the energy of the so-called axial-orbital as the essential, material-dependent parameter. It is uniquely related to the range of the intra-layer hopping. It controls the Cu 4s-character, influences the perpendicular hopping, and correlates with the observed Tc at optimal doping. We explain its dependence on chemical composition and structure, and present a generic tight-binding model.Comment: 5 pages, Latex, 5 eps figure
    corecore