24 research outputs found

    Protecting Important Sites for Biodiversity Contributes to Meeting Global Conservation Targets

    Get PDF
    Protected areas (PAs) are a cornerstone of conservation efforts and now cover nearly 13% of the world's land surface, with the world's governments committed to expand this to 17%. However, as biodiversity continues to decline, the effectiveness of PAs in reducing the extinction risk of species remains largely untested. We analyzed PA coverage and trends in species' extinction risk at globally significant sites for conserving birds (10,993 Important Bird Areas, IBAs) and highly threatened vertebrates and conifers (588 Alliance for Zero Extinction sites, AZEs) (referred to collectively hereafter as ‘important sites’). Species occurring in important sites with greater PA coverage experienced smaller increases in extinction risk over recent decades: the increase was half as large for bird species with>50% of the IBAs at which they occur completely covered by PAs, and a third lower for birds, mammals and amphibians restricted to protected AZEs (compared with unprotected or partially protected sites). Globally, half of the important sites for biodiversity conservation remain unprotected (49% of IBAs, 51% of AZEs). While PA coverage of important sites has increased over time, the proportion of PA area covering important sites, as opposed to less important land, has declined (by 0.45–1.14% annually since 1950 for IBAs and 0.79–1.49% annually for AZEs). Thus, while appropriately located PAs may slow the rate at which species are driven towards extinction, recent PA network expansion has under-represented important sites. We conclude that better targeted expansion of PA networks would help to improve biodiversity trends

    Synergies between the key biodiversity area and systematic conservation planning approaches

    Get PDF
    Systematic conservation planning and Key Biodiversity Areas (KBAs) are the two most widely used approaches for identifying important sites for biodiversity. However, there is limited advice for conservation policy makers and practitioners on when and how they should be combined. Here we provide such guidance, using insights from the recently developed Global Standard for the Identification of KBAs and the language of decision science to review and clarify their similarities and differences. We argue the two approaches are broadly similar, with both setting transparent environmental objectives and specifying actions. There is however greater contrast in the data used and actions involved, as the KBA approach uses biodiversity data alone and identifies sites for monitoring and vigilance actions at a minimum, whereas systematic conservation planning combines biodiversity and implementation‐relevant data to guide management actions. This difference means there is much scope for combining approaches, so conservation planners should use KBA data in their analyses, setting context‐specific targets for each KBA type, and planners and donors should use systematic conservation planning techniques when prioritizing between KBAs for management action. In doing so, they will benefit conservation policy, practice and research by building on the collaborations formed through the KBA Standard's development

    Financial Costs of Meeting Global Biodiversity Conservation Targets: Current Spending and Unmet Needs

    No full text
    World governments have committed to halting human-induced extinctions and safeguarding important sites for biodiversity by 2020, but the financial costs of meeting these targets are largely unknown. We estimate the cost of reducing the extinction risk of all globally threatened bird species (by ≥1 IUCN Red List category) to be US0.875−1.23billionannuallyoverthenextdecade,ofwhich120.875-1.23 billion annually over the next decade, of which 12% is currently funded. Incorporating threatened non-avian species increases this total to US3.41-4.76billionannually.Weestimatethatprotectingandeffectivelymanagingallterrestrialsitesofglobalavianconservationsignificance(11,731ImportantBirdAreas)wouldcostUS4.76 billion annually. We estimate that protecting and effectively managing all terrestrial sites of global avian conservation significance (11,731 Important Bird Areas) would cost US65.1 billion annually. Adding sites for other taxa increases this to US$76.1 billion annually. Meeting these targets will require conservation funding to increase by at least an order of magnitude

    Global screening for Critical Habitat in the terrestrial realm

    No full text
    <div><p>Critical Habitat has become an increasingly important concept used by the finance sector and businesses to identify areas of high biodiversity value. The International Finance Corporation (IFC) defines Critical Habitat in their highly influential Performance Standard 6 (PS6), requiring projects in Critical Habitat to achieve a net gain of biodiversity. Here we present a global screening layer of Critical Habitat in the terrestrial realm, derived from global spatial datasets covering the distributions of 12 biodiversity features aligned with guidance provided by the IFC. Each biodiversity feature is categorised as ‘likely’ or ‘potential’ Critical Habitat based on: 1. Alignment between the biodiversity feature and the IFC Critical Habitat definition; and 2. Suitability of the spatial resolution for indicating a feature’s presence on the ground. Following the initial screening process, Critical Habitat must then be assessed in-situ by a qualified assessor. This analysis indicates that a total of 10% and 5% of the global terrestrial environment can be considered as likely and potential Critical Habitat, respectively, while the remaining 85% did not overlap with any of the biodiversity features assessed and was classified as ‘unknown’. Likely Critical Habitat was determined principally by the occurrence of Key Biodiversity Areas and Protected Areas. Potential Critical Habitat was predominantly characterised by data representing highly threatened and unique ecosystems such as ever-wet tropical forests and tropical dry forests. The areas we identified as likely or potential Critical Habitat are based on the best available global-scale data for the terrestrial realm that is aligned with IFC’s Critical Habitat definition. Our results can help businesses screen potential development sites at the early project stage based on a range of biodiversity features. However, the study also demonstrates several important data gaps and highlights the need to incorporate new and improved global spatial datasets as they become available.</p></div

    Screening layer classification scheme.

    No full text
    <p>Classification of data subsets as likely or potential Critical Habitat is based on the strength of alignment with IFC PS6 criteria and scenarios and the spatial resolution of the data (adapted from Martin et al. [<a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0193102#pone.0193102.ref018" target="_blank">18</a>]).</p
    corecore