320 research outputs found

    Medically inoperable peripheral lung cancer treated with stereotactic body radiation therapy

    Get PDF
    BACKGROUND: Lung cancer is the most frequent cause of cancer-related death in North America. There is wide variation between patients who are medically inoperable and those managed surgically. The use of stereotactic body radiotherapy (SBRT) has narrowed the gap in survival rates between operative and non-operative management for those with early stage disease. This retrospective study reports outcomes for the treatment of peripheral non-small cell lung carcinoma (NSCLC) with SBRT from a single community practice. METHODS: Sixty-seven consecutive patients (pts) with inoperable, untreated peripheral lung tumors were treated from 2010 through 2012 and included in this study. Stereotactic targeting was facilitated by either spine or lung-based image guidance, either with or without fiducial marker tracking with a frameless robotic radiosurgery system. Peripheral tumors received a median biological effective dose (BED) of 105.6 Gy10 or in terms of a median physical dose, 48 Gy delivered over 4 daily fractions. Survival was measured using the Kaplan-Meier method to determine rates of local control, progression of disease and overall survival. The Cox proportional hazards regression model was used to study the effects of tumor size, stage, histology, patient age, tumor location (lobe), tracking method, and BED on the survival distributions. RESULTS: The median follow-up for this cohort was 24.5 months (range: 2.4-50.3) with an overall (OS) 3-year survival of 62.4 % (95 % CI: 74.3-47.3). The median progression-free survival was 28.5 months (95 % CI: 15.8 months to not reached). Local control (LC), defined as a lack of FDG uptake on PET/CT or the absence of tumor growth was achieved in 60 patients (90.9 %) at the time of first follow-up (median 3 months, range: 1-6). Local control at one year for the entire cohort was 81.8 % (95 % CI, 67.3-90.3). The one-year OS probability among those who achieved local control at first follow-up was 86.2 % (95 % CI, 74.3-92.9) but no patients who did not achieve LC at first follow-up survived one year. Of the 60 pts that achieved initial LC, 16 have died. The rates of local control, progression-free survival and overall survival were not statistically different for patients treated using a fiducial target tracking system versus non-invasive guidance. (p = 0.44, p = 0.97 and p = 0.66, respectively). No National Cancer Institute (NCI) Common Terminology Criteria for Adverse Events (CTCAE-4) grade 3 or greater toxicity was observed. CONCLUSION: SBRT is an effective treatment for medically inoperable NSCLC patients with peripherally located tumors. This therapy appears to be well tolerated with low toxicity, and patient outcomes when using non-invasive tumor tracking systems are not inferior to traditional fiducial-based techniques

    Influence of Total Western Diet on Docosahexaenoic Acid Suppression of Silica-Triggered Lupus Flaring in NZBWF1 Mice

    Get PDF
    Lupus is a debilitating multi-organ autoimmune disease clinically typified by periods of flare and remission. Exposing lupus-prone female NZBWF1 mice to crystalline silica (cSiO2), a known human autoimmune trigger, mimics flaring by inducing interferon-related gene (IRG) expression, inflammation, ectopic lymphoid structure (ELS) development, and autoantibody production in the lung that collectively accelerate glomerulonephritis. cSiO2-triggered flaring in this model can be prevented by supplementing mouse diet with the ω-3 polyunsaturated fatty acid (PUFA) docosahexaenoic acid (DHA). A limitation of previous studies was the use of purified diet that, although optimized for rodent health, does not reflect the high American intake of saturated fatty acid (SFA), ω-6 PUFAs, and total fat. To address this, we employed here a modified Total Western Diet (mTWD) emulating the 50th percentile U.S. macronutrient distribution to discern how DHA supplementation and/or SFA and ω-6 reduction influences cSiO2-triggered lupus flaring in female NZBWF1 mice. Six-week-old mice were fed isocaloric experimental diets for 2 wks, intranasally instilled with cSiO2 or saline vehicle weekly for 4 wks, and tissues assessed for lupus endpoints 11 wks following cSiO2 instillation. In mice fed basal mTWD, cSiO2 induced robust IRG expression, proinflammatory cytokine and chemokine elevation, leukocyte infiltration, ELS neogenesis, and autoantibody production in the lung, as well as early kidney nephritis onset compared to vehicle-treated mice fed mTWD. Consumption of mTWD containing DHA at the caloric equivalent to a human dose of 5 g/day dramatically suppressed induction of all lupus-associated endpoints. While decreasing SFA and ω-6 in mTWD modestly inhibited some disease markers, DHA addition to this diet was required for maximal protection against lupus development. Taken together, DHA supplementation at a translationally relevant dose was highly effective in preventing cSiO2-triggered lupus flaring in NZBWF1 mice, even against the background of a typical Western diet

    Engineering access to higher education through higher education fairs

    Get PDF
    Text from van Zanten A., Legavre A. “Engineering access to higher education through higher education fairs”, in Goastellec G., Picard F. (ed.) The Roles of Higher Education and Research in the Fabric of Societies, Leuven, Sense Publishers, 2014 (in press). Transition to higher education is a major social process. This transition has been mostly studied by French sociologists of education and higher education from perspectives focusing predominantly on the role of the socio-economic status, academic profiles and different tracks followed by secondary school students (Merle 1996, Duru-Bellat and Kieffer 2008, Convert 2010), and, to a lesser extent, on the types of secondary schools attended (Duru-Bellat and Mingat 1998, Nakhili 2005) and the local higher education provision (Berthet et al. 2010, Orange 2013). Although these structural determinants play a major role in explaining significant regularities, they provide more powerful explanations for individuals representing the extremes of the different variables considered, leaving room for the influence of other major factors for those students in intermediate situations. In addition, even in the case of students occupying extreme positions, structural perspectives better explain the distribution of students between different higher education tracks than they do between institutions and disciplines. In this chapter, we adopt a perspective that we see as complementary to and interacting with the perspective centred on structural determinants by focusing on the role of the devices that mediate the exchanges between students and higher education institutions, and more specifically on one device: higher education fairs. Our purpose in doing so is not only to document how these various devices frame, in ways that remain largely unexplored by researchers, exchanges between providers and consumers of higher education but also to point out – and further explore in future publications – how these devices, and the specific features of fairs, contribute to the reproduction and transformation of educational inequalities in access to higher education (Benninghoff et al. 2012)

    The Shelton Mastodon Site: Multidisciplinary Study of a Late Pleistocene (Twocreekan) Locality in Southeastern Michigan

    Full text link
    393-436http://deepblue.lib.umich.edu/bitstream/2027.42/48536/2/ID389.pd

    Formulation predictive dissolution (fPD) testing to advance oral drug product development: an introduction to the US FDA funded ‘21st Century BA/BE’ project

    Get PDF
    Over the past decade, formulation predictive dissolution (fPD) testing has gained increasing attention. Another mindset is pushed forward where scientists in our field are more confident to explore the in vivo behavior of an oral drug product by performing predictive in vitro dissolution studies. Similarly, there is an increasing interest in the application of modern computational fluid dynamics (CFD) frameworks and high-performance computing platforms to study the local processes underlying absorption within the gastrointestinal (GI) tract. In that way, CFD and computing platforms both can inform future PBPK-based in silico frameworks and determine the GI-motility-driven hydrodynamic impacts that should be incorporated into in vitro dissolution methods for in vivo relevance. Current compendial dissolution methods are not always reliable to predict the in vivo behavior, especially not for biopharmaceutics classification system (BCS) class 2/4 compounds suffering from a low aqueous solubility. Developing a predictive dissolution test will be more reliable, cost-effective and less time-consuming as long as the predictive power of the test is sufficiently strong. There is a need to develop a biorelevant, predictive dissolution method that can be applied by pharmaceutical drug companies to facilitate marketing access for generic and novel drug products. In 2014, Prof. Gordon L. Amidon and his team initiated a far-ranging research program designed to integrate (1) in vivo studies in humans in order to further improve the understanding of the intraluminal processing of oral dosage forms and dissolved drug along the gastrointestinal (GI) tract, (2) advancement of in vitro methodologies that incorporates higher levels of in vivo relevance and (3) computational experiments to study the local processes underlying dissolution, transport and absorption within the intestines performed with a new unique CFD based framework. Of particular importance is revealing the physiological variables determining the variability in in vivo dissolution and GI absorption from person to person in order to address (potential) in vivo BE failures. This paper provides an introduction to this multidisciplinary project, informs the reader about current achievements and outlines future directions

    Control of adult neurogenesis by programmed cell death in the mammalian brain

    Full text link
    • 

    corecore