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Abstract

Lupus is a debilitating multi-organ autoimmune disease clinically typified by periods of flare

and remission. Exposing lupus-prone female NZBWF1 mice to crystalline silica (cSiO2), a

known human autoimmune trigger, mimics flaring by inducing interferon-related gene (IRG)

expression, inflammation, ectopic lymphoid structure (ELS) development, and autoantibody

production in the lung that collectively accelerate glomerulonephritis. cSiO2-triggered flaring

in this model can be prevented by supplementing mouse diet with the ω-3 polyunsaturated

fatty acid (PUFA) docosahexaenoic acid (DHA). A limitation of previous studies was the use

of purified diet that, although optimized for rodent health, does not reflect the high American

intake of saturated fatty acid (SFA), ω-6 PUFAs, and total fat. To address this, we employed

here a modified Total Western Diet (mTWD) emulating the 50th percentile U.S. macronutri-

ent distribution to discern how DHA supplementation and/or SFA and ω-6 reduction influ-

ences cSiO2-triggered lupus flaring in female NZBWF1 mice. Six-week-old mice were fed

isocaloric experimental diets for 2 wks, intranasally instilled with cSiO2 or saline vehicle

weekly for 4 wks, and tissues assessed for lupus endpoints 11 wks following cSiO2 instilla-

tion. In mice fed basal mTWD, cSiO2 induced robust IRG expression, proinflammatory cyto-

kine and chemokine elevation, leukocyte infiltration, ELS neogenesis, and autoantibody

production in the lung, as well as early kidney nephritis onset compared to vehicle-treated

mice fed mTWD. Consumption of mTWD containing DHA at the caloric equivalent to a

human dose of 5 g/day dramatically suppressed induction of all lupus-associated endpoints.

While decreasing SFA and ω-6 in mTWD modestly inhibited some disease markers, DHA

addition to this diet was required for maximal protection against lupus development. Taken

together, DHA supplementation at a translationally relevant dose was highly effective in
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preventing cSiO2-triggered lupus flaring in NZBWF1 mice, even against the background of a

typical Western diet.

Introduction

Systemic lupus erythematosus (lupus) is a devastating multi-organ autoimmune disease (AD)

that adversely affects 1.5 million Americans, primarily women of child-bearing age [1]. While

the genome is a primary predisposing factor for lupus, it is now recognized that environmental

exposures over a lifetime can exacerbate or ameliorate disease activity [2, 3]. The initiating step

in lupus is loss of tolerance to nuclear self-antigens, resulting in production of autoreactive

antibodies and formation of circulating immune complexes [1]. These complexes deposit in

the tissues, where they promote activation and infiltration of circulating mononuclear cells

leading to organ damage. In the kidney, this manifests as glomerulonephritis that, if left

untreated, culminates in end-stage renal failure. Lupus patients typically experience quiescent

periods with low disease activity intermittently interrupted by episodes of disease flaring

marked by increased symptom severity and active organ damage [4].

Genome-driven mouse models of lupus have been used to elucidate mechanisms of disease

pathogenesis and to evaluate efficacy of interventions [5]. Similar to human lupus, female

NZBWF1 mice are more likely to develop lupus than their male counterparts [6]. These mice

display steady, gradual expansion of autoreactive B and T cells, proinflammatory cytokine and

chemokine expression, elevations of autoantibodies, and development of organ damage, thus

mimicking the periods of remission in human lupus that precede flaring. Also similar to

human lupus, flare-associated disease activity can be initiated and organ damage accelerated

in these models by several triggers, including UV exposure [7, 8], epidermal injury [9], and

interferon (IFN)-α-expressing adenovirus injection [10–12].

Exposure to the respirable toxicant crystalline silica (cSiO2) dust is also a known trigger of

lupus and other ADs in humans and animals (reviewed in [13–15]). In lupus-prone female

NZBWF1 mice, intranasal instillation with cSiO2 mimics flaring by triggering autoimmunity

onset three months earlier than controls [16, 17]. When introduced into the lungs, cSiO2 initi-

ates chronic sterile inflammation that progresses from local to systemic autoimmunity [18].

Due to their small size (approximately 2 μm), cSiO2 particles deposit in the alveoli where alveo-

lar macrophage phagocytose them, ultimately triggering phagolysosome permeabilization.

This in turn activates the inflammasome resulting in IL-1 and IL-18 release, as well as cell

death by pyroptosis, apoptosis, and necrosis [19, 20]. Because of the slow clearance of cSiO2

from the lung, particles released after cell death are again phagocytosed, evoking a vicious

cycle of inflammation and cell death. In cSiO2-instilled female NZBWF1 mice, we observed

the development of ectopic lymphoid structures (ELS) and autoantibodies in bronchoalveolar

lavage fluid (BALF) and plasma [Cite Bates 2015, 2018]. Circulating autoantibodies bind their

cognate autoantigens resulting in immune complexes that deposit in the kidney, promoting

inflammation. Collectively, findings in NZBWF1 mice confirm that, following airway expo-

sure to cSiO2, the lung serves as nexus triggering flares of systemic autoimmunity and

glomerulonephritis.

Conventional treatments for managing lupus, such a glucocorticoids, have considerable

adverse effects, while newer immunotherapies are expensive and benefit only a subpopulation

of lupus patients [21]. Therefore, new interventions to prevent or delay lupus flaring are

needed. Results of human and animal studies suggest that consumption of ω-3 PUFAs from
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marine sources can both prevent and resolve inflammation and autoimmune disease, as

reviewed previously [22–24]. At the mechanistic level, ω-3 PUFAs modulate immune function

by altering; 1) ω-6 incorporation into phospholipids, 2) production of bioactive lipid media-

tors; 3) intracellular signaling, transcription factor activity, and gene expression; and, 4) mem-

brane structure and ultimately function [22]. These mechanisms may be at play in the

protective effects seen in human lupus trials employing ω-3 supplementation [25–27]. Relative

to animal studies, we previously assessed the impact of supplementing purified rodent diet

with ω-3 PUFA docosahexaenoic acid (DHA) on genome-driven autoimmunity in female

NZBWF1 mice [28]. Dietary DHA dose-dependently increased ω-3 PUFA content in the

erythrocytes, lungs, kidneys, and spleen while also suppressing the cSiO2-triggered the trig-

gered inflammatory response. Remarkably, the decrease in inflammatory response correlated

with reduced cSiO2-triggered leukocyte infiltration in the kidneys and resultant glomerulone-

phritis [29–31].

To better parallel human food consumption in rodent feeding studies, the total Western

diet (TWD) was formulated to emulate typical American intakes of macro- and micro-nutri-

ents on an energy density basis for rodents [32, 33]. The TWD is based on 50th percentile

intakes reported in the Centers for Disease Control National Health and Nutrition Examina-

tion Survey (NHANES) for 2007–2008, which were adjusted for differences in caloric intake.

Overall, the TWD is not necessarily extreme in the level of any given nutrient, but rather

reflects the overall U.S. dietary pattern. The TWD has fewer calories from protein and carbo-

hydrate sources and twice that from fat as compared to the AIN-93G diet, the standard diet

fed to rodents in nutritional studies to date. The new TWD diet contains more SFA and mono-

unsaturated fatty acids (MUFAs), less PUFAs, more complex carbohydrates, and twice the

level of simple sugars. As such, the TWD better represents typical U.S. nutrition intakes, mak-

ing it very useful for studies employing animal models of human health and disease [34]. Here,

we employed a modified TWD (mTWD) based on U.S. macronutrient intake to assess the

impact of DHA supplementation with or without SFA and ω-6 PUFA reduction on cSiO2-

induced lupus endpoints in NZBWF1 mice. The findings reported herein provide important

new insights into the translatability of DHA’s effects on lupus flaring in this novel mouse

model.

Methods

Animals

Experimental animal procedures were reviewed and approved by Michigan State University’s

Institutional Animal Care and Use Committee (AUF # PROTO201800113) in accordance with

the guidelines of the National Institute of Health. Female lupus-prone NZBWF1 mice were

obtained at 6 wks of age from Jackson Laboratories (Bar Harbor, ME), housed 4 per cage, and

allowed free access to feed and water. Only females were included in this study, as the inci-

dence and severity of lupus symptoms is less pronounced in male NZBWF1 mice [35]. Ani-

mals were maintained under a 12-hour light/dark cycle with regulated temperature (21–24˚C)

and humidity (40–55%). Mice were monitored daily by animal facility staff, observed for signs

of distress such as rapid heart rate and lethargy, and weighed weekly in case of unexplained

weight loss. Veterinary staff was alerted to any potential issues or advised for further monitor-

ing. Following silica installation, animals were under observation for approximately 1 hour

immediately following the procedure to identify any adverse events and observed again

approximately four hours post-instillation.
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Fatty acid analyses

Fatty acid concentrations in diets and tissues were determined by gas liquid chromatography

(GLC) as previously described [30]. Erythrocyte fatty acids were measured by Omega Quant

Inc. (Sioux Falls, SD).

Diet formulation

Table 1 summarizes formulations of the four isocaloric experimental diets used in this study.

Since the focus of this study was on macronutrients, a modified version of the TWD (mTWD)

was used as a basal diet for all experimental groups, with the modification being that micronu-

trients were provided by the standard AIN-93G vitamin and mineral mixes. Experimental

diets were prepared as follows: 1) control diet (CON) was the basal mTWD with no other alter-

ations; 2) DHA-supplemented diet ("DHA) was prepared by replacing 30 g/kg of olive oil in

the mTWD (composed primarily of the ω-9 monosaturated fatty acid oleic acid) with 30 g/kg

DHASCO microalgal oil containing 40% DHA (provided by Dr. Kevin Hadley, Martek Biosci-

ences Corporation Columbia, MD); 3) reduced SFA and ω-6 diet (#SF.ω6) was prepared by

replacing a portion of SFA and ω-6 in the mTWD with olive oil; and 4) #SF.ω6 diet supple-

mented with DHA (#SF.ω6"DHA) was prepared by supplementing with DHASCO microalgal

oil as indicated above. GLC analysis confirmed the expected changes in amounts of ω-3

PUFAs, ω-6 PUFAs, and SFAs in the four experimental diets (Table 2, Fig 1). Experimental

diets were prepared fresh biweekly, flushed with nitrogen, vacuum sealed, and stored at -20˚C

until use. Mice were provided fresh diet every day to prevent oxidation of the fatty acids. Palat-

ability was assessed for the first 2 wk to ensure proper consumption.

Table 1. Experimental diet formulations.

Experimental Diet

CON "DHA #SF.ω-6 #SF.ω-6 "DHA

Ingredient (g/Kg)
Casein 190.00 190.00 190.00 190.00

L-Cystine 2.85 2.85 2.85 2.85

Corn Starch 230.00 230.00 230.00 230.00

Maltodextrin 70.00 70.00 70.00 70.00

Sucrose 256.62 256.62 256.62 256.62

Corn oil 16.50 16.50 3.30 3.30

Soybean oil 29.40 29.40 5.90 5.90

Anhydrous milkfat 36.30 36.30 7.20 7.20

Lard 28.00 28.00 5.60 5.60

Beef tallow 24.80 24.80 5.00 5.00

Cholesterol 0.40 0.40 0.52 0.52

Cellulose 30.00 30.00 30.00 30.00

AIN-93 Mineral Mix 40.59 40.59 40.59 40.59

AIN-93 Vitamin Mix 11.60 11.60 11.60 11.60

Choline Bitartrate 2.90 2.90 2.90 2.90

TBHQ Antioxidant 0.03 0.03 0.03 0.03

Extra virgin olive oila 30.00 0.00 138.00 108.00

DHA-enriched algal oilb 0.00 30.00 0.00 30.00

aOlive oil contained 678 g/kg oleic acid and 84 g/kg linoleic acid, as reported by the USDA, FDC ID 748648
bAlgal oil contained 395 g/kg DHA and 215 g/kg oleic acid, as reported by manufacturer

https://doi.org/10.1371/journal.pone.0233183.t001
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cSiO2

cSiO2 (Min-U-Sil1 5, 1.5–2.0 μm average particle size, U.S. Silica (Mapleton, PA) was acid

washed and oven-dried before addition of sterile phosphate buffered saline (PBS) [16]. Stock

suspensions were prepared fresh in PBS prior to use, and suspensions were sonicated and vor-

texed for 1 min before intranasal instillation of each animal.

Experimental design

Fig 2 depicts the experimental design for this study. Briefly, groups (n = 8) of mice were fed

one of the four isocaloric experimental diets beginning at 6 wk of age. 7 mice from the #SF.

ω6"DHA diet group were analyzed, as one animal succumbed to an unrelated illness prior to

termination of the experiment. After 2 wk, groups of mice were anesthetized with 4% isoflur-

ane and intranasally instilled with 1.0 mg cSiO2 in 25 μl PBS or 25 μl PBS vehicle (VEH) as

described previously [16]. Body weights were monitored weekly and urine assessed biweekly

for proteinuria using clinical dipsticks (Cortez Diagnostics, Calabasas, CA). cSiO2 instillation

and experimental diets did not affect body weight changes over the course of the study (Fig 3)

and proteinuria was not detectable. At 22 wk of age (11 wk following the final cSiO2 exposure),

mice were euthanized by intraperitoneal injection with 56 mg/kg body weight sodium pento-

barbital and exsanguination via the abdominal aorta. This time point was selected to capture

ectopic lymphoid tissue neogenesis in the lungs following cSiO2 exposure prior to and during

onset of glomerulonephritis based on previous studies [29, 30]. Blood was collected with hepa-

rin-coated syringes and centrifuged at 3500 xg for 10 min at 4˚C for separation of erythrocytes

Table 2. Fatty acid content of experimental diets as determined by GLC.

Experimental Diet

CON "DHA #SF.ω6 #SF.ω6"DHA

Common Name Chemical Formula (% of total fatty acids, mean ± SD)
Lauric C12:0 0.65 ± 0.01A 1.49 ± 0.03B 0.14 ± 0.01C 0.83 ± 0.01D

Myristic C14:0 2.87 ± 0.06A 5.54 ± 0.05B 0.53 ± 0.01C 2.51 ± 0.02D

Pentadecanoic C15:0 0.29 ± 0.00A 0.30 ± 0.00A 0.07 ± 0.00B 0.06 ± 0.00B

Palmitic C16:0 22.24 ± 0.16A 22.63 ± 0.05B 10.87 ± 0.06C 11.00 ± 0.01C

Palmitoleic C16:1ω7 1.15 ± 0.03A 1.46 ± 0.02B 0.57 ± 0.02C 0.84 ± 0.00D

Stearic C18:0 8.49± 0.04A 8.26 ± 0.03B 3.61 ± 0.03C 3.37 ± 0.01D

Oleic C18:1ω9 39.19 ± 0.38A 29.00 ± 0.08B 72.63 ± 0.08C 64.41 ± 0.03D

Linoleic C18:2ω6 21.07 ± 0.21A 20.62 ± 0.18B 8.57 ± 0.04C 7.82 ± 0.04D

Arachidic C20:0 0.21 ± 0.03A 0.17 ± 0.01A 0.29 ± 0.00B 0.28 ± 0.01B

alpha-Linolenic C18:3ω3 1.90 ± 0.03A 1.81 ± 0.04B 0.93 ± 0.01C 0.87 ± 0.02C

Behenic C22:0 0.10 ± 0.01A 0.11 ± 0.01A 0.10 ± 0.01A 0.11 ± 0.00A

Lignoceric C24:0 0.04 ± 0.01A 0.05 ± 0.01A 0.03 ± 0.00A 0.05 ± 0.00A

Eicosapentaenoic C20:5ω3 0.00 ± 0.00A 0.13 ± 0.00B 0.00 ± 0.00A 0.10 ± 0.01C

Docosahexaenoic C22:6ω3 0.00 ± 0.00A 7.09 ± 0.20B 0.00 ± 0.00A 6.34 ± 0.08C

Total SFA 35.28 ± 0.21A 38.84 ± 0.05B 15.80 ± 0.08C 18.39 ± 0.02D

Total MUFA 41.74 ± 0.36A 31.49 ± 0.10B 74.70 ± 0.10C 66.49 ± 0.01D

Total ω-3 PUFA 1.90 ± 0.03A 9.04 ± 0.19B 0.93 ± 0.01C 7.31 ± 0.05D

Total ω-6 PUFA 21.07 ± 0.21A 20.62 ± 0.18B 8.57 ± 0.04C 7.82 ± 0.04D

ω-6: ω-3 ratio 11.07 ± 0.10A 2.28 ± 0.07B 9.24 ± 0.13C 1.12 ± 0.01D

Data presented as mean ± SD. Difference between diets compared by ordinary one-way ANOVA followed by Tukey’s multiple comparison test. Unique letters indicate

significant differences between groups (p<0.05)

https://doi.org/10.1371/journal.pone.0233183.t002
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and plasma, which were then stored at -80˚C. BALF was collected from whole lungs as

described previously [36] and stored at -80˚C for cytokine and autoantibody analysis. The left

lung lobe was fixed with 10% (v/v) neutral buffered formalin (Fisher Scientific, Pittsburgh, PA)

at constant pressure (30 cm H2O) for minimum of 1 h, stored in formalin for 24 h, and then

formalin was exchanged to 30% ethanol for long term storage and further processing for his-

tology and immunohistochemistry. The caudal lung lobe was removed, held in RNAlater

(Thermo Fisher Scientific, Wilmington, DE) overnight at 4˚C, then stored at -80˚C for RNA

analysis. The right lung, kidney, liver, and spleen were snap-frozen in liquid nitrogen and

stored at -80˚C for fatty acid analyses.

IRG expression

Total RNA was extracted from the lung using TriReagent (Sigma Aldrich, St. Louis, MO) per

manufacturer’s protocol. Extracted RNA was purified with a Zymo RNA Clean and Concen-

trator Kit, including DNase digestion to remove any possible DNA contamination (Zymo

Research, Irvine, CA, catalog number R1017). Total RNA was quantified using a NanoDrop-

100 (Thermo Fisher Scientific) and reverse transcribed to cDNA at 50 ng/ul with a High

Capacity cDNA Reverse Transcription Kit (Thermo Fisher Scientific, Waltham, MA). TaqMan

Assays were then performed on a SmartChip Real-Time PCR System in technical triplicates

for 15 IRGs and 3 housekeeping genes (Actb, Gapdh, Hprt). The IFN score was calculated

using 15 IRGs that were significant upregulated in cSiO2 treated mice relative to VEH-treated

mice (Ccl7, Zbp1, Ifi44, Ifit1, Irf7, Isg15, Mx1, Oas1, Oas2, Oasl1, Psmb8, Rsad2, Siglec1, Ccl8,

Cxcl10), as determined by Student’s t-test for parametric data or Mann-Whitney U test for

nonparametric data.

For each gene, the copy number relative to the average expression of Gapdh, Hprt, and Actb
was calculated. First, the delta Ct was calculated for each gene by subtracting the mean delta Ct

of the two housekeeping genes from the gene of interest. The relative copy number was calcu-

lated as previously described [37, 38] using the following equation:

RCN ¼ 2� DCt � 100

Missing values were replaced with ½ the minimum RCN for each gene. For example, the

minimum RCN of Zbp1 was 0.75, thus samples with missing values for Zbp1 were assigned an

RCN ofof 0.37. Then, outliers within each treatment group were identified using robust outlier

test (ROUT) with a Q value of 0.05%. After removing outliers, each gene was autoscaled by

subtracting the mean expression of each sample and dividing by the standard deviation. The

IFN score was calculated by summing the autoscaled expression for each gene within a given

sample. All genes were given equal weight.

Cytokine analyses

Cytokine levels in BALF and plasma were analyzed with Immune Monitoring 48-plex Procar-

taPlex Mouse Luminex Bead-based Immunoassay (Thermo Fisher Scientific, catalog number

EPX480-20834-901) according to the manufacturer’s protocols at the Michigan State Univer-

sity Flow Cytometry Core using a Luminex 200.

Autoantibody ELISAs

Autoantibody ELISA kits from Alpha Diagnostic International were utilized as per kit proto-

cols for IgG-specific anti-double-stranded DNA (Alpha Diagnostic, San Antonio, TX, dsDNA,

Catalog number 5120), and total anti-nuclear antigens (IgG + IgM + IgA) (ANA/EN, Catalog
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Fig 1. Experimental diets have unique fatty acid compositions. (A) DHA supplementation ("DHA) increased the

percentage of total ω-3 PUFAs at the expense of MUFAs. SFAs and ω-6 PUFAs were reduced in the #SF.ω6 diet while

MUFAs were increased. (B) Both "DHA and #SF.ω6 diets had lower ω-6:ω-3 ratio than the CON diet. Bars without

the same letters differ (p<0.001).

https://doi.org/10.1371/journal.pone.0233183.g001
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number 5210) in the BALF and plasma. Samples were read on a FilterMax F3 Multimode plate

reader (Molecular Devices, San Jose, CA) at 450 nm.

BALF cell quantitation and identification

Total viable cell numbers in BALF were determined by Trypan Blue exclusion. Cytological

slides from BALF were prepared, allowed to air dry, and stained with Diff-Quick (Fisher Scien-

tific). Differential cell counts for macrophages/monocytes, lymphocytes, neutrophils, and

eosinophils in BALF were determined using morphological criteria from 200 total cells on

cytological slides. Remaining BALF was centrifuged at 2400 xg for 15 min, and supernatant

collected and stored at -80˚C.

Fig 2. Experimental design. Feeding of experimental diets was begun in 6 wk old female NZBWF1 mice. At 8 wk of age, mice

were intranasally instilled with cSiO2 once per wk for 4 wk. Body weights were measured weekly, and urine was collected

weekly from 18 wk of age onward to monitor the development of proteinuria. Animals were necropsied at 22 wk of age, 11 wk

following the final cSiO2 instillation. Plasma, BALF, and tissues were collected for analysis.

https://doi.org/10.1371/journal.pone.0233183.g002

Fig 3. cSiO2 instillation and experimental diets did not affect body weight changes over time. Mice were weighed

weekly to identify differences in weight gain between diet groups. No significant differences were observed between

treatment groups (p < .05).

https://doi.org/10.1371/journal.pone.0233183.g003
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Lung histopathology

Randomly oriented, serial sections of formalin-fixed left lung lobes were routinely processed

and embedded in paraffin. Tissue sections (5 μm) were deparaffinized and stained with hema-

toxylin and eosin (H&E) for histopathology. Tissues were scored semi-quantitatively by a

board-certified veterinary pathologist in a blinded fashion for: (a) presence of lymphoid aggre-

gates within perivascular and peribronchiolar regions; (b) histologically evident ectopic lym-

phoid tissues; (c) presence of alveolar proteinosis; (d) alveolitis (defined as the increased

accumulation in the alveolar parenchyma of neutrophils, lymphocytes, and mononuclear/mac-

rophages); (e) alveolar type II epithelial cell hyperplasia; and (f) mucous cell metaplasia in

bronchiolar epithelium. Lungs were individually graded for these lesions as % of total pulmo-

nary tissue examined based on the following criteria: (0) no changes compared to control

mice; (1) minimal (<10%); (2) slight (10–25%); (3) moderate (26–50%); (4) severe (51–75%);

or (5) very severe (>75%) of total area affected.

Immunohistochemistry and morphometry of lungs

Immunohistochemistry was performed on formalin-fixed, paraffin embedded, left lung lobe

for identification of B and T cell infiltration using anti-CD45R (1:600 rat anti-CD45R mono-

cloncal antibody from Becton Dickinson, Franklin Lakes, NJ, catalog # 550286)and anti-CD3

antibodies (1:250 rabbit anti-CD3 polyconal antibody from Abcam, Cambridge, MA catalog #

ab5690), respectively, as described previously [16, 30]. Slides were digitally scanned using a

VS110 (Olympus, Hicksville, NY) virtual slide system. At least 100 images were then captured

at 20X magnification using systematic random sampling with NewCast software (Visiopharm,

Hoersholm, Denmark). Volume densities of CD45R+ or CD3+ cells in the bronchial and peri-

vascular areas of the lungs were estimated using a point grid over the randomly sampled

images with the STEPanizer 1.8 Stereology Tool. The number of points landing directly on the

CD45R+ or CD3+ cells were counted and the volume density or percentage of CD45R+ and

CD3+ per reference area was calculated.

Kidney histopathology

Fixed kidneys were sectioned, paraffin-embedded, cut and stained with either H&E or Periodic

acid-Schiff and hematoxylin (PASH), and evaluated for lupus nephritis by a board-certified

veterinary pathologist using a modified International Society of Nephrology/Renal Pathology

Lupus Nephritis Classification system [39]. Slide sections were graded as follows: (0) no tubu-

lar proteinosis and normal glomeruli; (1) mild tubular proteinosis with multifocal segmental

proliferative glomerulonephritis and occasional early glomerular sclerosis and crescent forma-

tion; (2) moderate tubular proteinosis with diffuse segmental proliferative glomerulonephritis,

early glomerular sclerosis and crescent formation; and (3) marked tubular proteinosis with dif-

fuse global proliferative and sclerosing glomerulonephritis.

Statistical analysis

Statistical analysis was performed using GraphPad Prism Version 8 (GraphPad Software, La

Jolla California USA, www.graphpad.com). First, suspected outliers were verified using the

ROUT with a conservative Q value of 1%, meaning that there was <1% chance of excluding a

data point as an outlier in error. Data that did not meet the normality assumption as deter-

mined by the Shapiro-Wilk test (p<0.01) were analyzed using a the Kruskal-Wallis nonpara-

metric test with Dunn’s post-hoc test for selected multiple comparisons. Data that did not

meet the equal variance assumption as determined by the Brown-Forsythe test (p<0.01) were
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analyzed by the Brown-Forsythe/Welch ANOVA with Dunnett’s T3 post-hoc test for multiple

comparisons. Otherwise, data meeting both normality and variance assumptions were ana-

lyzed using a standard one-way ANOVA with Sidak’s post-hoc test for multiple comparisons.

The groups that were compared were as follows: 1) VEH/CON vs. cSiO2/CON; 2) cSiO2/CON

vs cSiO2/"DHA; 3) cSiO2/CON vs. cSiO2/#SF.ω6; 4) cSiO2/"DHA vs. cSiO2/#SF.ω6"DHA; 5)

cSiO2/#SF.ω6 vs. cSiO2/#SF.ω6"DHA; and, 6) cSiO2/CON vs cSiO2/#SF.ω6"DHA. For sam-

ples where every individual in the VEH/CON group was undetectable, a one-sample t-test was

performed on the cSiO2/CON group to confirm that cSiO2-induced changes were significantly

different from the limit of quantification. Then, the appropriate statistical test was applied to

compare the remaining groups, as described above. In all instances, a significant effect of the

diet group was inferred when the adjusted p<0.05.

Results

DHA intake increases ω-3 PUFA content in red blood cells and tissues

Previous studies have shown that the Omega-3 Index, obtained by measuring DHA and EPA

in total red blood cell (RBC) fatty acids, is correlated with the ω-3 PUFA content in other tis-

sues [40–42]. We assessed this, as well as correlations between RBCs and tissues for SFAs,

MUFAs, and ω-6 PUFAs. Individual tissues showed unique total FA profiles, with varying

degrees of similarity to each other and to RBCs. In general, correlations between RBCs and tis-

sues were higher for ω-3 and ω-6 PUFAs than for SFAs and MUFAs (S1 Fig). This is in agree-

ment with previous studies demonstrating high correlations between dietary and tissue levels

of fatty acids that cannot be produced endogenously, such as essential ω-3 and ω-6 PUFAs

[43–46]. The most consistent trend across all tissues was a concurrent decrease of the major ω-

6 PUFA arachidonic acid (ARA) as DHA levels increased (Figs 4 and 5).

RBCs had higher levels of total PUFA than the tissues, totaling approximately 40% of RBC

fatty acids. The PUFA pool in RBCs was composed primarily of LA, ARA, EPA, and DPA.

Total ω-3 incorporation into RBCs was approximately three times greater in mice that con-

sumed "DHA or #SF.ω6"DHA diets compared to those fed CON or #SF.ω6 diets (Table 3,

Fig 4A and 4B). Both DHA (22:6ω3) and EPA (20:5ω3) contributed to this increase in total ω-

3 PUFA. The increase in EPA observed with DHA supplementation is consistent with pub-

lished studies performed in vitro and in vivo [47, 48].

In the RBCs, reducing dietary SFA and ω-6 PUFAs had only a minor impact on SFA con-

tent (approximately 4%) and reduced RBC total ω-6 levels by approximately 10%, with the

greatest change observed in linoleic acid (LA, 18:2ω6). Alternatively, combining DHA supple-

mentation with ω-6 reduction resulted in decreased RBC ω-6 content by over 50%. The

decrease in ω-6 PUFAs with DHA supplementation was largely due to changes in ARA.

The lung was the only organ where a significant change in total FA composition was

observed in response to cSiO2 (S1 Table, Fig 5A and 5B). Here, cSiO2 exposure induced an

increase in SFA in the form of palmitic acid (C16:0) from ~30% (similar to RBC levels) to

~50%. Palmitic acid is the fatty acid moiety of dipalmitoylphophatidylcholine (DPPC), a major

component of pulmonary surfactant. This increase in palmitic acid appears to be at the

expense of stearic acid and oleic acid (OA, C18:1ω9). OA was decreased further by DHA sup-

plementation, but increased slightly in the #SF.ω-6 diets. Trends within the PUFA fraction are

similar to those observed in the RBCs, with ω-3 PUFAs significantly increased by DHA

supplementation.

The liver appeared to be the organ most reflective of dietary fat intake. In the liver, plasma

non-esterified fatty acids (NEFAs) obtained from adipose tissue lipolysis or from dietary fatty

acids are packaged into lipoproteins to be distributed throughout the body or stored in lipid
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droplets as triacylglycerides (TAGs) [49–51]. Furthermore, TAGs present in the liver are

highly similar to the dietary FA composition, especially when dietary fat remains consistent

over time. MUFA levels were greatest in the liver (S2 Table, Fig 5C and 5D), with OA com-

posing ~40% of total liver fatty acids in the CON and "DHA diets and ~60% in the #SF.ω6 diet

and #SF.ω6"DHA diets. This is notable because OA is the major FA in olive oil, which

replaced corn oil (composed primarily of LA) in the #SF.ω-6 diet. A reduction in SFA and ω-6

PUFAs (mainly in palmitic acid and LA, respectively) was observed in animals fed the #SF.ω6

diet. SFA in the liver was comparable to levels in the spleen and kidney (~15%) (Fig 5E and

5G).

Fig 4. RBC fatty acid composition is influenced by modulation of dietary lipids. Major fatty acid subtypes (A) and the 7

most abundant fatty acids (B) were compared across treatment groups. Total fatty was determined by GLC and expressed

as percent of total. Statistically significant differences in PUFA, MUFA, and SFA are indicated in Table 3. Different letters

indicate statistically significant differences between treatment groups for individual fatty acids (p<0.05).

https://doi.org/10.1371/journal.pone.0233183.g004
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The total FA composition of the kidney (S3 Table, Fig 5E and 5F) and spleen (S4 Table,

Fig 5G and 5H) were nearly identical. Unlike RBCs and the liver, there was no clear change in

OA in these tissues. Changes in SFA levels across all diets were also minimal. In both tissues,

there was a clear decrease in LA with the #SF.ω6 diets. The increase in DHA in these tissues

was evident, though not as dramatic as observed in the RBC, lung, and liver.

Fig 5. Individual tissues show distinct patterns of fatty acid incorporation. Total fatty acid content was determined by GLC and

expressed as percent of total. (A,C,E,G) The distribution of SFA, MUFA, and PUFA was compared between tissues. Statistically

significant differences are indicated in S1–S4 Tables. (B,D,F,H,J) The seven most abundant fatty acids in each tissue were

expressed as percent of total. Different letters indicate statistically significant differences between treatment groups for individual

fatty acids (p<0.05).

https://doi.org/10.1371/journal.pone.0233183.g005
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DHA supplementation suppresses cSiO2-induced IRG response in the

lungs

The effects of dietary treatments on cSiO2-induced IRG expression in the lung were compared

using an IFN score, encompassing 15 genes with known functions in response to IFN signal-

ing. Expression of each of these genes was significantly induced (p<0.05) following cSiO2

exposure. The IFN score was calculated for each sample by taking the sum of the autoscaled

expression of each gene (see Methods). The IFN score was elevated significantly (p<0.05) in

cSiO2-instilled mice fed CON but suppressed nearly to baseline in those fed the "DHA diet

(Fig 6A). The IFN score in cSiO2-treated mice fed the #SF.ω6"DHA diet was reduced com-

pared to those fed CON or #SF.ω6. The mRNA expression profiles for four representative

genes, Irf 7, Cxcl9, Isg15, and Oas1 are illustrative of the expression pattern for individual IRGs

(Fig 6B).

Table 3. Red blood cell fatty acid content as determined by GLC.

VEH / CON cSiO2 / CON cSiO2 /"DHA cSiO2 / #SF.ω6 cSiO2 / #SF.ω6"DHA

Common Name Chemical Formula (% of total fatty acids, mean ± SD)
Myristic C14:0 0.22 ± 0.01A 0.23 ± 0.03A 0.33 ± 0.06B 0.13 ± 0.02C 0.22 ± 0.02A

Palmitic C16:0 24.87 ± 0.48A 25.47 ± 0.67A 27.20 ± 0.49B 24.71 ± 0.72A 27.05 ± 0.38B

Palmitelaidic C16:1ω7t 0.14 ± 0.01A 0.15 ± 0.01A 0.14 ± 0.01A 0.07 ± 0.01B 0.06 ± 0.01B

Palmitoleic C16:1ω7 0.45 ± 0.05A 0.45 ± 0.06A 0.60 ± 0.08B 0.32 ± 0.04C 0.41 ± 0.03A

Stearic C18:0 16.00 ± 0.40A 16.29 ± 0.84A 15.83 ± 0.18A 14.84 ± 0.75B 13.45 ± 0.41C

Elaidic C18:1ω9t 0.67 ± 0.02A 0.69 ± 0.04A 0.62 ± 0.04B 0.27 ± 0.02C 0.24 ± 0.02C

Oleic C18:1ω9 14.77 ± 0.23A 15.03 ± 0.43A 12.99 ± 0.55B 21.70 ± 0.19C 20.00 ± 0.29D

Linoelaidic C18:2ω6t 0.10 ± 0.01A 0.11 ± 0.01AB 0.12 ± 0.03AB 0.08 ± 0.01BC 0.07 ± 0.01C

Linoleic C18:2ω6 10.83 ± 0.34A 10.97 ± 0.39A 14.30 ± 0.78B 7.96 ± 0.35C 9.70 ± 0.47D

Arachidic C20:0 0.14 ± 0.01A 0.13 ± 0.03A 0.13 ± 0.03A 0.12 ± 0.03A 0.11 ± 0.02A

gamma-Linolenic C18:3ω6 0.05 ± 0.01A 0.06 ± 0.01A 0.05 ± 0.01AB 0.05 ± 0.00AB 0.03 ± 0.01B

Eicosenoic C20:1ω9 0.27 ± 0.01AC 0.28 ± 0.02ABC 0.18 ± 0.04C 0.49 ± 0.06B 0.29 ± 0.03AB

alpha-Linolenic C18:3ω3 0.08 ± 0.01AB 0.08 ± 0.01B 0.09 ± 0.01B 0.04 ± 0.01AC 0.04 ± 0.01C

Eicosadienoic C20:2ω6 0.29 ± 0.03A 0.30 ± 0.03A 0.30 ± 0.03A 0.21 ± 0.01B 0.18 ± 0.01B

Behenic C22:0 0.13 ± 0.04A 0.10 ± 0.02B 0.10 ± 0.02AB 0.07 ± 0.01B 0.09 ± 0.02B

Dihomo-g-linolenic C20:3ω6 1.37 ± 0.14A 1.26 ± 0.09A 1.43 ± 0.20A 1.42 ± 0.08A 1.24 ± 0.14A

Arachidonic C20:4ω6 19.92 ± 0.49A 18.91 ± 0.87B 6.84 ± 0.56C 19.14 ± 0.45B 5.11 ± 0.49D

Lignoceric C24:0 0.24 ± 0.05A 0.18 ± 0.07AB 0.20 ± 0.06AB 0.14 ± 0.03B 0.19 ± 0.01AB

Eicosapentaenoic C20:5ω3 0.30 ± 0.03A 0.25 ± 0.02B 2.98 ± 0.16C 0.20 ± 0.02D 4.73 ± 0.18E

Nervonic C24:1ω9 0.20 ± 0.04AC 0.14 ± 0.06AB 0.13 ± 0.04B 0.21 ± 0.04C 0.26 ± 0.02C

Docosatetraenoic C22:4ω6 2.23 ± 0.09A 2.22 ± 0.13A 0.22 ± 0.03B 1.98 ± 0.15C 0.14 ± 0.01B

Docosapentaenoic ω6 C22:5ω6 0.47 ± 0.03A 0.47 ± 0.03A 0.05 ± 0.01B 0.51 ± 0.04A 0.03 ± 0.01C

Docosapentaenoic ω3 C22:5ω3 0.79 ± 0.06AB 0.75 ± 0.08A 0.87 ± 0.04BD 0.46 ± 0.05C 0.90 ± 0.04D

Docosahexaenoic C22:6ω3 5.50 ± 0.16A 5.50 ± 0.19A 14.35 ± 0.49B 5.06 ± 0.17C 15.00 ± 0.28B

Total SFA 41.58 ± 0.62AC 42.39 ± 0.72AB 43.79 ± 0.45B 40.01 ± 1.13C 41.32 ± 0.35AC

Total MUFA 16.50 ± 0.21A 16.73 ± 0.46A 14.65 ± 0.57B 23.06 ± 0.19C 21.26 ± 0.30D

Total ω-3 PUFA 6.67 ± 0.16A 6.58 ± 0.17A 18.27 ± 0.56B 5.76 ± 0.21C 20.67 ± 0.27D

Total ω-6 PUFA 35.25 ± 0.68A 34.30 ± 0.89A 23.40 ± 0.14B 31.18 ± 0.90C 16.49 ± 0.37D

ω-3 Index 5.80 ± 0.15A 5.75 ± 0.18A 17.32 ± 0.56B 5.27 ± 0.17C 19.74 ± 0.28D

Data presented as mean ± SD. Difference between diets compared by ordinary one-way ANOVA followed by Tukey’s multiple comparison. Nonparametric versions of

these tests were used when applicable. Unique letters indicate significant differences between groups (p<0.05).

https://doi.org/10.1371/journal.pone.0233183.t003
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DHA intake suppresses cSiO2-induced cytokine elevations in the BALF

As we have observed in prior studies employing AIN-93G diet [16, 17, 30], cSiO2 instillation of

mice fed CON diet induced a range of cytokines in BALF that are associated with leukocyte

Fig 6. DHA supplementation attenuates cSiO2-induced IRG expression in the lungs. (A) The IFN score was

calculated by combining the auto-scaled expression of 15 differentially expressed IFN-regulated genes (Ccl7, Zbp1,

Ifi44, Ifit1, Irf7, Isg15, Mx1, Oas1, Oas2, Oasl1, Psmb8, Rsad2, Siglec1, Ccl8, Cxcl10) for each animal. (B) Expression of

four representative IRGs. RCN is relative copy number. Values of p<0.1 are shown, with p<0.05 considered

statistically significant.

https://doi.org/10.1371/journal.pone.0233183.g006
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infiltration and the inflammatory response (Fig 7). Levels of the monocyte chemoattractant

proteins MCP-1 (Fig 7A) and MCP-3 (Fig 7B) tended to be lower in the BALF of cSiO2-

treated animals fed "DHA, with significant suppression occurring in mice fed #SF.ω6"DHA.

Though not all changes were statistically significant, similar observations were made for TNF-

α (Fig 7C), IL-1α (Fig 7D), IL-6 (Fig 7E), and IL-18 (Fig 7F), which are known for their roles

in inflammation and lupus development. Furthermore, T-helper cytokines IL-17A (Fig 7G)

and IL-22 (Fig 7H), which recruit TH17 cells and polarize macrophages toward a proinflam-

matory M1 phenotype, were upregulated by cSiO2 in CON-fed mice and downregulated in

mice fed #SF.ω6"DHA and "DHA, respectively. Finally, while cSiO2 instillation induced eleva-

tion of B cell activating factor (BAFF) (Fig 7I) in the BALF of CON-fed mice, this response

was not affected by feeding "DHA, #SF.ω6, or #SF.ω6"DHA. Overall, DHA supplementation

with or without SFA and ω-6 PUFA suppression alleviated induction of many cytokines

involved in lupus pathogenesis.

DHA consumption suppresses cSiO2-induced pulmonary immune cell

infiltration, including B and T lymphocytes and ELS neogenesis

Further consistent with prior investigations utilizing AIN-93G diet [16, 30], intranasal instilla-

tion with cSiO2 increased total cells (Fig 8A), monocytes (Fig 8B), neutrophils (Fig 8C), and

lymphocytes (Fig 8D) in the BALF of mice at experiment termination. Notably, total cell and

monocyte accumulation were inhibited in mice fed "DHA, #SF.ω6, and #SF.ω6"DHA diets.

Similar trends were observed with the increase for neutrophils and lymphocytes, though not

all were statistically significant.

Histological assessment of H&E-stained lung tissue from cSiO2-instilled mice fed CON

showed robust peribronchiolar and perivascular leukocytic infiltration (Fig 9A). Immunohis-

tochemical staining further indicated cSiO2-induced development of ELS in the lung, as evi-

denced by the organized accumulation of B cells (CD45R+) and T cells (CD3+) (Fig 9A).

cSiO2-induced cell infiltration and ELS neogenesis were suppressed in mice fed "DHA and

#SF.ω6"DHA diets, but unlike the observations in BALF, not affected in mice fed the #SF.ω6

diet. Morphometric analysis confirmed that cSiO2 treatment of mice fed CON diets elicited

accumulation of B cells (Fig 9B) and T cells (Fig 9C) in the lung, further suggestive of ELS neo-

genesis, and that this response was markedly suppressed in mice fed "DHA and #SF.ω6"DHA

diets.

cSiO2-induced autoantibody production is attenuated by DHA

supplementation

Elevations in anti-dsDNA and anti-nuclear autoantibodies are hallmarks of lupus flaring and

progression. Mice in the cSiO2/CON group exhibited significant increases for both of these

autoantibodies in both BALF and plasma compared to VEH/CON (Fig 10). Consumption of

"DHA, #SF.ω6, or #SF.ω6"DHA diets significantly reduced cSiO2-anti-dsDNA responses in

BALF (Fig 10A), whereas plasma responses were reduced only in mice fed the "DHA diet (Fig

10B). Anti-nuclear antibody responses followed similar trends (Fig 10C and 10D).

DHA intake protects against cSiO2-induced lesions in the kidney

Naïve female NZBWF1 mice typically display glomerulonephritis around 35 wk of age [52]

and die of kidney failure within 1 year. Previous studies in our lab and others have shown that

exposure to cSiO2 accelerates this phenotype, with nephritis being first observed within 3

months after the final cSiO2 instillation (i.e. age 22 wk) in mice fed the AIN-93G diet [16, 29].
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While proteinuria was not evident up to experiment termination, histopathological analysis

indicated that multifocal segmental proliferative glomerulonephritis was more severe in kid-

neys of mice after cSiO2 instillation fed CON and #SF.ω6 compared to mice fed DHA-supple-

mented diets (Fig 11A and 11B).

Discussion

The TWD represents typical eating patterns in the U.S, making it highly appropriate for inves-

tigating how modulation of dietary lipids affects flaring and progression in preclinical models

of lupus. The results presented herein indicate for the first time that translationally relevant

DHA supplementation against the complex background of the Western diet is highly effective

in protecting against cSiO2-triggered IRG expression, cytokine/chemokine release, leukocyte

infiltration, ELS neogenesis, autoantibody production in the lungs as well as glomerulonephri-

tis (summarized in Fig 12). While some disease endpoints were modestly attenuated by reduc-

ing SFAs and ω-6 PUFAs through increasing the ω-9 PUFA content with olive oil, further

DHA supplementation to this diet was required for maximal protection against lupus develop-

ment. Finally, consistent with the observed effects in the lung, consumption of DHA-amended

diets prevented early onset of glomerulonephritis in cSiO2-exposed mice. Together, these find-

ings suggest that ω-3 supplementation to a Western diet without substantial diet changes may

be protective against lupus flaring.

The observation that DHA can suppress IRG responses is highly significant because IFN

signaling has been centrally linked to lupus disease activity in preclinical and clinical studies.

Fig 7. DHA consumption suppresses cSiO2-triggered cytokine release. Cytokine levels in the BALF were assessed using antibody

bead array. Values of p<0.1 are shown, with p�0.05 considered statistically significant.

https://doi.org/10.1371/journal.pone.0233183.g007
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Fig 8. DHA supplementation with SFA and ω-6 PUFA reduction suppress cSiO2-induced immune cell

accumulation in BALF. BALF was collected at experiment termination and (A) total cells, (B) monocytes, (C)

neutrophils, and (D) lymphocytes enumerated. Values of p<0.1 are shown, with p<0.05 considered statistically

significant.

https://doi.org/10.1371/journal.pone.0233183.g008
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In NZBWF1 mice, adenovector-mediated delivery of IFN-α, a major type I IFN, induces the

development of lupus [53]. Gonzalez-Quintial, et al. [54] demonstrated in C57Bl6 mice, which

are not genetically predisposed to lupus, that early-life virus exposure combined with adult

exposure to cSiO2 results in the production of lupus-like symptoms, including autoantibody

production and glomerulonephritis. Likewise, the IRG signature is closely related to the flaring

and pathogenesis of lupus symptoms in human patients [55–57]. Randomized, double-blind,

placebo-controlled phase IIb clinical trials indicated that sifalimumab, an anti-IFNα monoclo-

nal antibody [58], and anifrolumab, a type I IFN receptor antagonist [59], positively impacted

lupus symptoms. Recently, a large, double-blind, placebo-controlled phase 3 clinical trial

Fig 9. DHA supplementation impedes perivascular and peribronchiolar lymphocyte infiltration, and the neogenesis of ELS. (A) Light photomicrographs

of tissue sections from the left lung of mice intranasally instilled with crystalline silica (cSiO2; +) or saline (VEH alone; -), fed a diet with (+) or without (-) DHA

supplementation, and with (+) or without (-) SF.ω6 reduction. Lung sections were stained with H&E (first column), immunohistochemically stained for

CD45R+ B lymphoid cells (arrows; brown chromagen; second column), or CD3+ T lymphoid cells (arrows; brown chromagen; third column). Peribronchiolar

and perivascular accumulations of B and T lymphoid cells (ELS; arrows) were present in the lungs of cSiO2-exposed mice fed diets without DHA

supplementation (second and fourth rows). B or T cell accumulations were not observed in the lung of control mice intranasally instilled with saline and fed

CON (row one). Minimal perivascular and peribronchiolar accumulations of B and T lymphoid cells were seen in the lungs of mice intranasally exposed with

cSiO2 and fed "DHA (row three) or #SF.ω6"DHA. (row five). Abbreviations: a–alveolar parenchyma, b–bronchiolar airway, v–blood vessel. Morphometric

analysis was used to quantitatively determine the volume density of (B) CD45R+ and (C) CD3+ area in the measured lung area. Values of p<0.1 are shown, with

p<0.05 considered statistically significant.

https://doi.org/10.1371/journal.pone.0233183.g009

Fig 10. DHA intake suppresses cSiO2-induced lupus-associated autoantibodies in the BALF and the plasma.

Effects of cSiO2 and experimental diets on anti-dsDNA antibodies (A,B) and anti-nuclear antibodies (ANA) (C,D) in

BALF (A,C) and plasma (B,D). Values of p<0.1 are shown, with p<0.05 considered statistically significant.

https://doi.org/10.1371/journal.pone.0233183.g010
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(TULIP-2) was finalized and documented that intravenous anifrolumab lowered overall dis-

ease activity, reduced skin disease, and enabled oral corticosteroid tapering [60]. Accordingly,

the finding here that DHA supplementation of CON and #SF.ω6 diets lowered the IRG

response is potentially relevant from a translational perspective.

Our analysis of tissue fatty acid content confirmed that the ω-3 PUFA content of the RBC,

presented both as the Omega-3 Index and as total ω-3 PUFA, is reflective of ω-3 PUFA levels

in the diet [61]. We found here that Omega-3 Indexes for mice fed "DHA and #SF.ω6"DHA

diets were three times higher than those fed CON or #SF.ω6 diets. These trends were consis-

tent with %EPA+DHA levels in the tissues. Alternatively, the effects of feeding #SF.ω6 diet on

the Omega-3 Index and the %EPA+DHA in tissues were minimal compared to CON-fed ani-

mals. This may explain why the #SF.ω6 diet provided minimal protection against the cSiO2-

induced inflammatory response. Additionally, the #SF.ω-6 diet had a minor impact on tissue

and RBC SFA levels and did not alter levels of long chain ω-6 PUFAs. Though there was a

reduction in total ω-6 PUFA levels, this was accomplished primarily by reduction of LA

(18:2ω6) rather than ARA (20:4ω6).

Our results suggest that the balance of long chain ω-3 and ω-6 PUFAs in the cell membrane

might be critical to promoting inflammation or resolution. One explanation for this observa-

tion is that ω-3 and ω-6 PUFAs are substrates for downstream bioactive lipid metabolites. It is

well established that lipid metabolites derived from the “arachidonic acid cascade” have pri-

marily inflammatory actions, especially in the case of acute inflammation [62]. Over the last

two decades, many metabolites of ω-3 PUFAs have been identified as having anti-

Fig 11. DHA intake inhibits cSiO2-induced glomerulonephritis. (A) Light photomicrographs of tissue sections from the kidneys

of mice intranasally instilled with saline alone (VEH control; 1) or with crystalline silica (cSiO2; 2–5). Animals were fed the CON

diet (1, 2) or "DHA diet (3). Others were fed the #SF.ω6 without DHA (4) or with DHA supplementation (#SF.ω6"DHA, 5). No

renal histopathology was evident in saline-instilled control mice (1) or cSiO2-instilled mice fed DHA (3, 5). In contrast, cSiO2-

instilled mice fed diets without DHA supplementation (2, 4) had renal histopathology characteristic of a membranoproliferative

glomerulonephritis characterized by hypercellular glomeruli with thickened mesangial tissue, tubular proteinosis (solid arrows), and

tubular epithelial hyperplasia (stippled arrows). Abbreviations: g–glomerulus, rt–renal tubules. (B) Quantification of renal histology

score, based on the following scoring criteria: No proteinosis, normal glomeruli (0); multifocal segmental proliferative

glomerulonephritis (1); multifocal segmental proliferative glomerulonephritis and occasional glomerular sclerosis and crescent

formation (2); diffuse global segmental proliferative glomerulonephritis (3). Values of p<0.1 are shown, with p<0.05 considered

statistically significant.

https://doi.org/10.1371/journal.pone.0233183.g011
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Fig 12. DHA supplementation against the complex background of the Western diet suppresses cSiO2-triggered flaring and

progression of lupus in NZBWF1 mice. The results presented here and in other investigations suggest that cSiO2 promotes cell

death in alveolar macrophages, resulting in the release of proinflammatory cytokines and chemokines that recruit and activate

additional immune cells, including T cells and B cells. Accumulation of cellular debris results in uptake and presentation of

autoantigens (AAg) to T- and B-cells. Among the cellular debris are host nucleic acids, which stimulate the production of Type I

IFN from plasmacytoid dendritic cells. Type I IFN promotes cytokine release, antigen uptake, and maturation of B cells to plasma

cells, which produce autoantibodies (AAb) against host antigens both locally and systemically. Upon binding their cognate AAgs,
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inflammatory and pro-resolving properties [63]. A recent study demonstrated that the plasma

and RBC levels of ω-3 PUFA were highly correlated with the production of ω-3 PUFA-derived

lipid mediators, many of which are involved in the resolution of inflammation. Similarly, sup-

plementation with EPA and DHA led to a decrease in ω-6 PUFAs, namely ARA, as well as

decreased ω-6-PUFA derived metabolites [64, 65]. Shifting the membrane composition to

favor long chain ω-3 PUFAs rather than ω-6 PUFAs, such as arachidonic acid, may enhance

the pro-resolving phenotype promoted by ω-3 PUFA-derived lipid mediators.

Despite a limited number of studies, there is evidence that increasing levels of long chain ω-

3 PUFAs in lupus patients leads is protective against inflammation, a process that likely

involves the action of bioactive lipid metabolites. A recent study showed strong associations

between dietary PUFA intake from fish and the ω-3 status in lupus patients. Further, the RBC

ω-3 levels were negatively associated with levels of C-reactive protein [66]. Others have

reported that lupus patients had lower levels of plasma ω-3 PUFAs [67] and plasma resolvin

D1, an anti-inflammatory metabolite of DHA than healthy controls [68]. Multiple human

studies in lupus and other rheumatic diseases have shown decreased disease activity in patients

receiving ω-3 supplementation [24], but few studies have investigated the impact of modulat-

ing other dietary lipids, such as ω-6 PUFAs and SFAs. To date, there has been no extensive

study of the membrane fatty acid content or plasma lipidome of lupus patients. Investigation

in this area–both in pre-clinical and clinical settings–is necessary to elucidate potential benefit

of ω-3 PUFA supplementation in individuals with lupus.

To summarize, DHA supplementation at a translationally relevant dose was highly effective

in preventing cSiO2-triggered lupus flaring in NZBWF1 mice fed a Western diet. Future per-

spectives should include understanding how the TWD may impact the ameliorative effects of

lower DHA doses in this model over time and how these responses are influenced by ω-6,

SFA, and total fat content. Ultimately, well-designed clinical trials will be needed to confirm

the value of ω-3 PUFA supplementation for the prevention and treatment of lupus in humans.
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