30 research outputs found

    Can residuals of the Solar system foreground explain low multipole anomalies of the CMB ?

    Full text link
    The low multipole anomalies of the Cosmic Microwave Background has received much attention during the last few years. It is still not ascertained whether these anomalies are indeed primordial or the result of systematics or foregrounds. An example of a foreground, which could generate some non-Gaussian and statistically anisotropic features at low multipole range, is the very symmetric Kuiper Belt in the outer solar system. In this paper, expanding upon the methods presented by Maris et al. (2011), we investigate the contributions from the Kuiper Belt objects (KBO) to the WMAP ILC 7 map, whereby we can minimize the contrast in power between even and odd multipoles in the CMB, discussed discussed by Kim & Naselsky (2010). We submit our KBO de-correlated CMB signal to several tests, to analyze its validity, and find that incorporation of the KBO emission can decrease the quadrupole-octupole alignment and parity asymmetry problems, provided that the KBO signals has a non-cosmological dipole modulation, associated with the statistical anisotropy of the ILC 7 map. Additionally, we show that the amplitude of the dipole modulation, within a 2 sigma interval, is in agreement with the corresponding amplitudes, discussed by Lew (2008).Comment: 24 pages, 9 figures, 5 tables. Matches version in JCA

    Thermal history of the plasma and high-frequency gravitons

    Full text link
    Possible deviations from a radiation-dominated evolution, occurring prior the synthesis of light nuclei, impacted on the spectral energy density of high-frequency gravitons. For a systematic scrutiny of this situation, the Λ\LambdaCDM paradigm must be complemented by (at least two) physical parameters describing, respectively, a threshold frequency and a slope. The supplementary frequency scale sets the lower border of a high-frequency domain where the spectral energy grows with a slope which depends, predominantly, upon the total sound speed of the plasma right after inflation. While the infra-red region of the graviton energy spectrum is nearly scale-invariant, the expected signals for typical frequencies larger than 0.01 nHz are hereby analyzed in a model-independent framework by requiring that the total sound speed of the post-inflationary plasma be smaller than the speed of light. Current (e.g. low-frequency) upper limits on the tensor power spectra (determined from the combined analysis of the three large-scale data sets) are shown to be compatible with a detectable signal in the frequency range of wide-band interferometers. In the present context, the scrutiny of the early evolution of the sound speed of the plasma can then be mapped onto a reliable strategy of parameter extraction including not only the well established cosmological observables but also the forthcoming data from wide band interferometers.Comment: 47 pages, 31 included figures, to appear in Classical and Quantum Gravit

    BINGO: A code for the efficient computation of the scalar bi-spectrum

    Full text link
    We present a new and accurate Fortran code, the BI-spectra and Non-Gaussianity Operator (BINGO), for the efficient numerical computation of the scalar bi-spectrum and the non-Gaussianity parameter f_{NL} in single field inflationary models involving the canonical scalar field. The code can calculate all the different contributions to the bi-spectrum and the parameter f_{NL} for an arbitrary triangular configuration of the wavevectors. Focusing firstly on the equilateral limit, we illustrate the accuracy of BINGO by comparing the results from the code with the spectral dependence of the bi-spectrum expected in power law inflation. Then, considering an arbitrary triangular configuration, we contrast the numerical results with the analytical expression available in the slow roll limit, for, say, the case of the conventional quadratic potential. Considering a non-trivial scenario involving deviations from slow roll, we compare the results from the code with the analytical results that have recently been obtained in the case of the Starobinsky model in the equilateral limit. As an immediate application, we utilize BINGO to examine of the power of the non-Gaussianity parameter f_{NL} to discriminate between various inflationary models that admit departures from slow roll and lead to similar features in the scalar power spectrum. We close with a summary and discussion on the implications of the results we obtain.Comment: v1: 5 pages, 5 figures; v2: 35 pages, 11 figures, title changed, extensively revised; v3: 36 pages, 11 figures, to appear in JCAP. The BINGO code is available online at http://www.physics.iitm.ac.in/~sriram/bingo/bingo.htm

    Confronting hybrid inflation in supergravity with CMB data

    Full text link
    FF-term GUT inflation coupled to N=1 Supergravity is confronted with CMB data. Corrections to the string mass-per-unit-length away from the Bogomolny limit are taken into account. We find that a superpotential coupling 10^{-7}/\mcN \lesssim \kappa \lesssim 10^{-2}/\mcN, with \mcN the dimension of the Higgs-representation, is still compatible with the data. The parameter space is enlarged in warm inflation, as well as in the curvaton and inhomogeneous reheat scenario. FF-strings formed at the end of PP-term inflation are also considered. Because these strings satisfy the Bogomolny bound the bounds are stronger: the gauge coupling is constrained to the range 10−7<g<10−410^{-7} < g <10^{-4}.Comment: 36 pages, 15 figure

    Measuring our Peculiar Velocity by "Pre-deboosting" the CMB

    Full text link
    It was recently shown that our peculiar velocity \beta with respect to the CMB induces mixing among multipoles and off-diagonal correlations at all scales which can be used as a measurement of \beta, which is independent of the standard measurement using the CMB temperature dipole. The proposed techniques rely however on a perturbative expansion which breaks down for \ell \gtrsim 1/(\beta) \approx 800. Here we propose a technique which consists of deboosting the CMB temperature in the time-ordered data and show that it extends the validity of the perturbation analysis multipoles up to \ell \sim 10000. We also obtain accurate fitting functions for the mixing between multipoles valid in a full non-linear treatment. Finally we forecast the achievable precision with which these correlations can be measured in a number of current and future CMB missions. We show that Planck could measure the velocity with a precision of around 60 km/s, ACTPol in 4 years around 40 km/s, while proposed future experiments could further shrink this error bar by over a factor of around 2.Comment: 14 pages, 7 figures. Revised projections for ACTPol, SPTPol and ACBAR; included projections for BICEP2; extended conclusions; typos correcte

    Large non-Gaussianities in the Effective Field Theory Approach to Single-Field Inflation: the Bispectrum

    Get PDF
    The methods of effective field theory are used to study generic theories of inflation with a single inflaton field and to perform a general analysis of the associated non-Gaussianities. We investigate the amplitudes and shapes of the various generic three-point correlators, the bispectra, which may be generated by different classes of single-field inflationary models. Besides the well-known results for the DBI-like models and the ghost inflationary theories, we point out that curvature-related interactions may give rise to large non-Gaussianities in the form of bispectra characterized by a flat shape which, quite interestingly, is independently produced by several interaction terms. In a subsequent work, we will perform a similar general analysis for the non-Gaussianities generated by the generic four-point correlator, the trispectrum.Comment: Version matching the one published in JCAP, 2 typos fixed, references added. 30 pages, 20 figure

    Large non-Gaussianities in the Effective Field Theory Approach to Single-Field Inflation: the Trispectrum

    Get PDF
    We perform the analysis of the trispectrum of curvature perturbations generated by the interactions characterizing a general theory of single-field inflation obtained by effective field theory methods. We find that curvature-generated interaction terms, which can in general give an important contribution to the amplitude of the four-point function, show some new distinctive features in the form of their trispectrum shape-function. These interesting interactions are invariant under some recently proposed symmetries of the general theory and, as shown explicitly, do allow for a large value of the trispectrum.Comment: 29 pages, 13 figure

    Exploring the BWCA (Bino-Wino Co-Annihilation) Scenario for Neutralino Dark Matter

    Get PDF
    In supersymmetric models with non-universal gaugino masses, it is possible to have opposite-sign SU(2) and U(1) gaugino mass terms. In these models, the gaugino eigenstates experience little mixing so that the lightest SUSY particle remains either pure bino or pure wino. The neutralino relic density can only be brought into accord with the WMAP measured value when bino-wino co-annihilation (BWCA) acts to enhance the dark matter annihilation rate. We map out parameter space regions and mass spectra which are characteristic of the BWCA scenario. Direct and indirect dark matter detection rates are shown to be typically very low. At collider experiments, the BWCA scenario is typified by a small mass gap m_{\tilde Z_2}-m_{\tilde Z_1} ~ 20-80 GeV, so that tree level two body decays of \tilde Z_2 are not allowed. However, in this case the second lightest neutralino has an enhanced loop decay branching fraction to photons. While the photonic neutralino decay signature looks difficult to extract at the Fermilab Tevatron, it should lead to distinctive events at the CERN LHC and at a linear e^+e^- collider.Comment: 44 pages, 21 figure

    A Bitter Pill: The Primordial Lithium Problem Worsens

    Full text link
    The lithium problem arises from the significant discrepancy between the primordial 7Li abundance as predicted by BBN theory and the WMAP baryon density, and the pre-Galactic lithium abundance inferred from observations of metal-poor (Population II) stars. This problem has loomed for the past decade, with a persistent discrepancy of a factor of 2--3 in 7Li/H. Recent developments have sharpened all aspects of the Li problem. Namely: (1) BBN theory predictions have sharpened due to new nuclear data, particularly the uncertainty on 3He(alpha,gamma)7Be, has reduced to 7.4%, and with a central value shift of ~ +0.04 keV barn. (2) The WMAP 5-year data now yields a cosmic baryon density with an uncertainty reduced to 2.7%. (3) Observations of metal-poor stars have tested for systematic effects, and have reaped new lithium isotopic data. With these, we now find that the BBN+WMAP predicts 7Li/H = (5.24+0.71-0.67) 10^{-10}. The Li problem remains and indeed is exacerbated; the discrepancy is now a factor 2.4--4.3 or 4.2sigma (from globular cluster stars) to 5.3sigma (from halo field stars). Possible resolutions to the lithium problem are briefly reviewed, and key nuclear, particle, and astronomical measurements highlighted.Comment: 21 pages, 4 figures. Comments welcom

    Magnetogenesis from Cosmic String Loops

    Full text link
    Large-scale coherent magnetic fields are observed in galaxies and clusters, but their ultimate origin remains a mystery. We reconsider the prospects for primordial magnetogenesis by a cosmic string network. We show that the magnetic flux produced by long strings has been overestimated in the past, and give improved estimates. We also compute the fields created by the loop population, and find that it gives the dominant contribution to the total magnetic field strength on present-day galactic scales. We present numerical results obtained by evolving semi-analytic models of string networks (including both one-scale and velocity-dependent one-scale models) in a Lambda-CDM cosmology, including the forces and torques on loops from Hubble redshifting, dynamical friction, and gravitational wave emission. Our predictions include the magnetic field strength as a function of correlation length, as well as the volume covered by magnetic fields. We conclude that string networks could account for magnetic fields on galactic scales, but only if coupled with an efficient dynamo amplification mechanism.Comment: 10 figures; v3: small typos corrected to match published version. MagnetiCS, the code described in paper, is available at http://markcwyman.com/ and http://www.damtp.cam.ac.uk/user/dhw22/code/index.htm
    corecore