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Abstract. We perform the analysis of the trispectrum of curvature perturbations

generated by the interactions characterizing a general theory of single-field inflation

obtained by effective field theory methods. We find that curvature-generated

interaction terms, which can in general give an important contribution to the amplitude

of the four-point function, show some new distinctive features in the form of their

trispectrum shape-function. These interesting interactions are invariant under some

recently proposed symmetries of the general theory and, as shown explicitly, do allow

for a large value of the trispectrum.
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1. Introduction

Inflation [1] is one of the central pillars of modern cosmology. Not only it provides

a natural solution to the flatness, horizon and monopole problems of standard Big-

Bang cosmology, but can also explain the production of density perturbations in the

early Universe which then lead to LSS [2, 3, 4, 5, 6] in the distribution of galaxies and

temperature anisotropies in the CMB [7, 8, 9, 10, 11, 12].

Besides the simplest single-field slow roll inflationary model, many other inflationary

mechanisms have been proposed since inflation was first introduced, and all are

compatible with the CMB and LSS observations. In order to probe deeper into the

dynamics of inflation and to remove the degeneracies generated by the many models so

far proposed, one might study observable quantities which are sensitive to deviations

from Gaussianity [13]: starting from the three-point function [14, 15], one then considers

the trispectrum [16] and in general higher-order correlators as well as loop effects

in the power spectrum [17]. Such non-Gaussian features will depend on the various

interactions characterizing any given inflationary model in the form of self-interactions

of the inflaton, its coupling with gravity and interactions with other fields in the case of

multi-field inflation (see, e.g., [18, 19, 20] for comprehensive and updated reviews). These

investigations are spurred by the fact that the continued analysis of WMAP data [12]

and the recent launch of the Planck satellite [21, 22] provide the exciting opportunity

to actually test the predictions of this zoo of models at the level of bispectrum and

trispectrum of curvature perturbations. A very useful tool in analyzing the possible

signatures of the different inflationary models is given by the effective field theory

approach to inflation recently introduced in [23] and further expanded in [24, 25, 26, 27].

There are various advantages in employing this formalism. Indeed, it provides a unifying

2



perspective on inflation in that it automatically accounts for many known inflationary

mechanisms. To each set of interactions for a given inflationary model there corresponds

in the effective Lagrangian a linear combination of operators obtained by turning on

and off some specific coefficients that regulate the weight of the operators (we introduce

these coeffcients later on and refer to them as Mn’s). The unifying power of the effective

field theory approach is quite manifest in that, in principle, it allows these coefficients

considerable more freedom than what they are granted in any specific inflationary model.

In fact, by being for the most part free parameters (a couple of these coefficients are

to obey some inequalities if one wants, as we do, the generalized speed of sound to

be smaller than unity), the Mn’s allow for the description of known interactions with

relative weights which would otherwise be fixed, so by employing effective field theory

one enlarges the region of the parameters space than can be spanned. Besides that, in

the effective Lagrangian some of the Mn’s multiply curvature-generated operators (see

below Eq. (2)) that are sometimes neglected but should in principle be studied as, in

fact, their contribution can be relevant [28] and increase the dimension of the parameters

space of the theory.

In this paper we use effective field theory techniques to study the trispectrum of a

very general theory for single field inflation. In particular, we concentrate on the

contributions of many novel curvature-generated terms as well as interactions that

characterize Ghost inflation [29]. As an ordering principle among the numerous

interactions such a general approach comprises, we employ two additional symmetries

of the action recently introduced in [30, 31] (see also [32]) and examine the cases when

one or both of these requirements are imposed on the theory. Following [33], we analyze

the shapes of these terms in four different configurations so as to identify distinctive

effects in the trispectrum shape-function from the various interactions. We first analyze

the contribution to the scalar exchange diagram due to a curvature-related term which

generates an interesting flat shape for the bispectrum [28]. This term produces a shape

function which is, in some configurations, different from all the shapes due to leading

interactions in general single-field inflation models [33].‡ We calculate and plot the

contributions to the contact interaction diagram by several interactions: we rediscover

the shape-function due to the leading fourth-order interaction in ghost inflation first

obtained in [30] and plot it in new configurations; an analysis of other interesting term

is also performed allowing us to identify novel distinctive features of curvature-related

interactions.

The paper is organized as follows. In section 2 we build on [24] to introduce the very

general effective theory we employ in all subsequent calculations. The reader who is

familiar with this procedure might want to skip this part and start directly from Eq. (9).

In section 3 we characterize the various interaction terms of the theory according to

their behaviour under the action of two specific symmetries. Afterwards, in section 4,

we proceed by briefly outlining the tools of the IN-IN formalism successively employed

‡ In these models the inflaton Lagrangian is an arbitrary function of the inflaton and its first derivative.

The theories we will consider here further generalize these models.
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in the trispectrum calculations. A separate analysis of the scalar exchange and contact

interaction diagrams contributions to the trispectrum is performed. Section 5 contains

a summary of the findings and comments on further work. In Appendix A we report

the details of the scalar exchange diagram calculations. In Appendix B we show the

reliability of our simplifying assumption on the classical solution to the equations of

motion for the general theory considered in this paper.

For the sake of clarity, we stress here that whenever we refer to general single-

field inflation models, often when elaborating on the results of [33], we are dealing

with theories which account for a great fraction of known inflationary models (DBI,

K-inflation etc.), but still miss an important subset including Ghost inflation and

curvature-generated interactions in general. On the other hand, the effective approach

of [24] we employ here also covers the latter.

2. The Hamiltonian up to fourth order

We will follow the effective theory approach first introduced in Ref. [24] in order to

write down the complete theory of single-field models of inflation up to fourth order

in perturbations, subjected to the sole requirement of an approximate shift symmetry,

π → π + const, on the scalar degree of freedom π. Let us give a brief account on how

to obtain the main formulas. We start with the scalar field φ responsible for inflation,

which is split as an unperturbed part plus the fluctuation:

φ(~x, t) = φ0(t) + δφ(~x, t). (1)

For reasons that will soon become clear, one chooses here to work in the the comoving

(or unitary) gauge for which δφ = 0 [23]. As a result, the action will no longer

be invariant under full spacetime diffeomorphisms (diffs) but only under the spatial

reparametrizations. This is the starting point to write the most general unitary gauge

space diffs invariant Lagrangian at the desired order in perturbation theory [24]:

S =

∫

d4x
√−g F (Rµνρσ, g

00, Kµν ,∇µ, t), (2)

where Kµν is the extrinsic curvature and the indices on the metric entries g00 are free

indices. Taking into account the fluctuations around a FRW background, one obtains

the following action

S =

∫

d4x
√
−g

[1

2
M2

PlR +M2
PlḢg00 −M2

Pl

(

3H2 + Ḣ
)

+

∑

n≥2

F (n)(g00 + 1, δKµν , δRµνρσ;∇µ; t)
]

, (3)

where the fluctuations contained in F (n) are at least second order. The next step is

restoring full spacetime diffs invariance. To see how it works, we take from [24] the

following sample terms in the action:
∫

d4x
√
−g

[

A(t) + B(t)g00(x)
]

. (4)
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Consider the time reparametrization: t → t + ξ0(~x, t); ~x → ~x; under its action (and

after a simple variable redefinition) Eq. (4) reads:
∫

d4x
√

−g(x)

[

A(t− ξ0(x)) +B(t− ξ0(x))
∂(t− ξ0(x))

∂xµ

∂(t− ξ0(x))

∂xν
gµν(x)

]

. (5)

At this stage the procedure we will adopt consists in promoting ξ0 to a field, ξ0(x) =

−π(x) and requiring the following gauge transformation rule: π(x) → π(x) − ξ0(x) on

π. With this assumption in place, the above action is invariant under full spacetime

diffeomorphisms. The scalar degree of freedom π makes its appearance in the time

dependence of the A(t + π), B(t + π) coefficients and in the transformed metric. This

procedure is essentially the same as the one of standard gauge theory: a Goldstone

boson which transforms non-linearly under the gauge transformation provides the

longitudinal component of a massive gauge boson. For high enough energies, the

Goldstone becomes the only relevant degree of freedom. This is the so-called equivalence

theorem. The same is true for our case: for sufficiently high energy the mixing with

gravity becomes irrelevant and the scalar π becomes the only relevant mode in the

dynamics (decoupling regime). One then needs to identify the scale of the energy above

which this approximation holds (on the other side of the energy range one always keeps

in mind the upper energy threshold that comes with the use of effective theory). This

procedure puts some bounds on the values of some of the coefficients that drive quadratic

operators in the action [24, 28]. We will not be concerned with these issues because most

of the interaction we will be analyzing start at third order in perturbations. It suffices

here to say that, since one is concerned with correlators just after horizon crossing, the

decoupling procedure works as long as the decoupling energy is smaller than the Hubble

rate H .

From now on we will work in the decoupling regime. In considering the terms of Eq. (3),

we will therefore use only the unperturbed entries of the metric tensor. To write the

effective Lagrangian up to third order, we start from Eq. (3) and follow the algorithm

given in [24]. Fluctuations are encoded in the F (n) terms. In order to be as general as

possible, one must also include all possible contributions coming from extrinsic curvature

Kµν terms.

Following the procedured outlined above, the third and fourth-order Lagrangian is

obtained. We will use the third-order expression to calculate the contribution to the

trispectrum of curvature perturbations arising from the scalar exchange diagram [28]:

S3 =

∫

d4x
√
−g

[

M2
PlḢ(∂µπ)

2 +M2(t)
4

(

2π̇2 − 2π̇
(∂iπ)

2

a2

)

− 4

3
M3(t)

4π̇3

− M̄1(t)
3

2

(−2H(∂iπ)
2

a2
+

(∂iπ)
2∂2

j π

a4

)

− M̄2(t)
2

2

((∂2
i π)(∂

2
jπ) +H(∂2

i π)(∂jπ)
2

a4

+ 2
π̇∂2

i ∂jπ∂jπ

a4

)

− M̄3(t)
2

2

(

(∂2
i π)(∂

2
jπ) + 2H(∂iπ)

2∂2
i π + 2π̇∂2

ijπ∂jπ

a4

)

− 2

3
M̄4(t)

3 1

a2
π̇2∂2

i π +
M̄5(t)

2

3

π̇

a4
(∂2

i π)
2 +

M̄6(t)
2

3

π̇

a4
(∂ijπ)

2 − M̄7(t)

3!

(∂2
i π)

3

a6
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− M̄8(t)

3!

∂2
i π

a6
(∂jkπ)

2 − M̄9(t)

3!

1

a6
∂ijπ∂jkπ∂kiπ

]

. (6)

The above action and its extension at higher perturbative orders covers many

inflationary theories, providing a unifying perspective which is hard to obtain without

an effective approach. Indeed, by switching on and off a single Mn = Mn, M̄n coefficient

one has control over all corresponding operators in the action (the bar on the M̄n’s

signals that these are curvature-generated terms). The hope is to be able to identify

distinctive features for as many as possible different combinations of theMn’s in the form

of specific patterns they produce in the shapes of the various correlators of curvature

perturbations. The degeneracies among the results for different inflationary mechanisms

that will inevitably arise might be removed by a joint analysis of the different n-point

functions, starting with the bispectrum, the trispectrum, loop corrections to the power

spectrum and so on. Let us briefly go through some of the main features of the third

order effective action above. All the comments can be straightforwardly extended to

the fourth-order expression as well.

• Consider only the quadratic terms: for M2 = M̄1,2,3 = 0 one recovers the usual

quadratic Lagrangian for the fluctuations, with sound speed c2s = 1. Switching

on M2 corresponds to allowing models with sound speed smaller than unity,

1/c2s = 1 − 2M4
2 /(M

2
PlḢ), which are often linked to a high level of primordial

non-Gaussianity [35, 24] as for DBI inflation. Further allowing for a non-zero M̄2,3

in the de Sitter limit, one recovers Ghost Inflation [29]. Similarly, having all M̄ ’s

set to zero, and going to third and higher order with the M ’s, one retrieves the

interactions characterizing DBI inflation [34, 35, 33] and K-inflation [36, 37] theories

and others. §
• The action in Eq. (6) contains in principle additional terms but, being interested in

those generating large non-Gaussianities, a selection has been made. Specifically,

at every order in fluctuations and for each Mn coefficient, only leading terms are

considered. One starts from the realization that, even for the most generic quadratic

action the following estimates hold at horizon crossing [28]:

π̇ ∼ Hπ, ∇π ∼ H
√

α0 +
√

α2
0 + 8β0

π ≡ H/c̃s π (7)

where c̃s is a sort of generalized speed of sound.

Also, as mentioned before, in the action the scalar appears only trough its

derivatives. When faced with a given Mn multiplying terms of the same

perturbative order with a given number of derivatives one therefore knows that

the leading term will be the one with the most spatial derivatives.

There is also the comparison between the same perturbative order but different

§ See [38, 39] for some recently introduced examples that require, in order to be recovered in the

effective field theory approach, that one relaxes the implicit assumption of a shift symmetry for the

scalar π.
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Mn terms to be made. All non-zero coefficients in front of the various operators

might be assumed to be of the same order [29]; interestingly, in [27], employing

renormalization and unitarity arguments, a natural (relative) value of 1/c2s was

obtained for the M4
2 ,M

4
3 coefficients. In general, we shall not restrict ourselves to

these situations. Considering theories with a speed of sound different from unity

and allowing for Mn’s of different orders greatly increases the number of viable

terms for large non-Gaussianities. Let us consider an illustrative example. Take

the interaction terms

−2M2(t)
4π̇

(∂iπ)
2

a2
; −M̄7(t)

3!

(∂2
i π)

3

a6

At horizon crossing, the region from which we expect the main contribution to

n-point functions, the comparison reads like M4
2HH2/c̃2s ↔ M̄7H

6/c̃6s. In a

Lorentz invariant theory with coefficients of the same order the first term would

clearly prevail. Allowing c̃s ≪ 1 makes the comparison less obvious and an

M̄7 ≫ M2 further strengthens this point. Here a word of caution is in order:

from simple dimensional analysis a term with ever increasing spatial derivatives

will have an Mn coefficient with smaller and smaller exponent (counterbalanced

by an higher exponent for H) and must eventually be subleading with respect to

the contributions with fewer derivatives. This is because in the effective theory

approach one is roughly making an H/M expansion (with M being the scale of the

underlying theory) and, although one can fully employ the freedom to have Mn’s

of different size up to some perturbative order in order to resuscitate interesting

contributions to the correlators, the Mn-driven contribution must eventually (from

some n on) cease to be relevant.

Employing the same calculational algorythm first introduced in [24] and used in writing

the complete third order action above, we obtain the most general fourth-order action

in this set up:

S4 =

∫

d4x
√
−g

[

1

2!
M2(t)

4 (∂iπ)
4

a4
+ 2M3(t)

4 π̇
2(∂iπ)

2

a2
+

2

3
M4(t)

4π̇4

−M̄1(t)
3

4

(

H(∂iπ)
4

a4
−

2π̇(∂iπ)
2∂2

j π

a4

)

− M̄2(t)
2

2

(

(∂jπ)
2(∂2

i π)
2

a6
+

2∂2
kπ∂iπ∂ijπ∂jπ

a6

)

−M̄3(t)
2

2

(

(∂ijπ)
2(∂kπ)

2

a6
+

2∂iπ∂ijπ∂jkπ∂kπ

a6

)

+
2

3
M̄4(t)

3
π̇(∂iπ)

2∂2
jπ

a4

−M̄6(t)
2

3!

(∂kπ)
2(∂ijπ)

2

a6
− M̄7(t)

3!

(

3

2

(∂2
i π)

2H(∂jπ)
2

a6
+

6 π̇∂2
kπ(∂j∂

2
i π)∂jπ

a6

)

−M̄8(t)

3!

(

H(∂iπ)
2(∂2

jπ)
2

a6
+

H(∂iπ)
2(∂jkπ)

2

2a6
− 2H∂2

kπ∂iπ∂ijπ∂jπ

a6
+

2π̇∂2
kπ∂

2
i ∂jπ∂jπ

a6

+
2π̇∂2

k∂iπ∂ijπ∂jπ

a6
+

2π̇∂ij∂ijk∂kπ

a6

)

− M̄5(t)
2

3!

(∂iπ)
2(∂2

jπ)
2

a6
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−M̄9(t)

2

(

H∂2
kπ(∂ijπ)

2

2a6
− H∂iπ∂ijπ∂jkπ∂kπ

a6
+

π̇∂ijπ∂ijkπ∂kπ

a6
+

π̇∂2
i ∂jπ∂jkπ∂kπ

a6

)

+
M̄3

10(t)

3

π̇3∂2
i π

a2
− M̄2

11(t)

3!

π̇2(∂2
i π)

2

a4
− M̄2

12(t)

3!

π̇2(∂ijπ)
2

a4
+

M̄13(t)

4!

2 π̇

a6
(∂2

i π)
3

+
M̄14(t)

4!

2 π̇∂2
kπ(∂ijπ)

2

a6
+

M̄15(t)

4!

2 π̇∂ijπ∂jkπ∂kiπ

a6
− N̄1(t)

4!

(∂2
i π)

4

a8
− N̄2(t)

4!

(∂2
kπ)

2(∂ijπ)
2

a8

−N̄3(t)

4!

∂2
ρπ∂ijπ∂jkπ∂kiπ

a8
− N̄4(t)

4!

(∂ijπ)
4

a8
− N̄5(t)

4!

∂ijπ∂jkπ∂kρπ∂ρiπ

a8

]

(8)

Note that, as pointed out in [40], starting at fourth order in perturbations, one

cannot immediately read off the Hamiltonian from the expression of the Lagrangian, in

other words H = −L does not hold here. We use the results one obtains by adopting

the correct procedure which was outlined in detail in [40].

Let us split the interaction Hamiltonian we will be concerned with as Hint = H3 +H4;

one can prove that the overall interaction Hamiltonian is then:

Hint = −L3 − L4 +

∫

d3x
√−g

[ 1

2M4
2 +H2ǫM2

P − 3HM̄3
1

(

(∂iπ)
4M8

2

a4
+

4π̇2(∂iπ)
2M4

2M
4
3

a2

+4π̇4M8
3 +

(∂kπ)
2∂2

i ∂jπ∂jπM
4
2 M̄

2
2

a6
+

2π̇2∂2
i ∂jπ∂jπM

4
3 M̄

2
2

a4
+

(∂2
i ∂jπ∂jπ)

2M̄4
2

4a8

+
(∂kπ)

2∂2
i ∂jπ∂jπM

4
2 M̄

2
3

a6
+

2π̇2∂2
i ∂jπ∂jπM

4
3 M̄

2
3

a4
+

(∂2
i ∂jπ∂jπ)

2M̄2
2 M̄

2
3

2a8
+

(∂2
i ∂jπ∂jπ)

2M̄4
3

4a8

+
4π̇(∂kπ)

2∂2
i πM

4
2 M̄

3
4

3a4
+

8π̇3∂2
i πM

4
3 M̄

3
4

3a2
+

2π̇∂2
kπ∂

2
i ∂jπ∂jπM̄

2
2 M̄

3
4

3a6
+

2π̇∂2
kπ∂

2
i ∂jπ∂jπM̄

2
3 M̄

3
4

3a6

+
4π̇2(∂2

kπ)
2M̄6

4

9a4
− (∂iπ)

2(∂2
kπ)

2M4
2 M̄

2
5

3a6
− 2π̇2(∂2

i π)
2M4

3 M̄
2
5

3a4
− (∂2

kπ)
2∂2

i ∂jπ∂jπM̄
2
2 M̄

2
5

6a8

−(∂2
kπ)

2∂jπ∂jπM̄
2
3 M̄

2
5

6a8
− 2π̇(∂2

kπ)
3M̄3

4 M̄
2
5

9a6
+

(∂2
kπ)

4M̄4
5

36a8
− (∂kπ)

2(∂ijπ)
2M4

2 M̄
2
6

3a6

−2π̇2(∂ijπ)
2M4

3 M̄
2
6

3a4
− (∂klπ)

2∂2
i ∂jπ∂jπM̄

2
2 M̄

2
6

6a8
(

2M4
2 +H2ǫM2

P − 3HM̄3
1

) − (∂klπ)
2∂2

i ∂jπ∂jπM̄
2
3 M̄

2
6

6a8
(

2M4
2 +H2ǫM2

P − 3HM̄3
1

)

−2π̇∂2
kπ(∂ijπ)

2M̄3
4 M̄

2
6

9a6
+

(∂2
kπ)

2(∂ijπ)
2M̄2

5 M̄
2
6

18a8
+

(∂ijπ)
4M̄4

6

36a8

)

]

(9)

where the above terms besides −(L3 + L4) are all at fourth order in perturbations.

3. Symmetries

Having written the complete Hamiltonian, we now proceed to calculate the four-point

function contributions arising from interaction terms at third and fourth order. We

employ here the IN-IN formalism [42, 43, 44, 45] and conveniently split the contributions

to the four-point function as the ones arising from terms that make up the contact
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interaction diagram and the ones that generate the scalar exchange diagram as in the

figure below.

Figure A: On the left, the scalar exchange diagram. Contact interaction diagram on the right.

It is useful at this stage to offer some comments on the calculations we are going

to present. As mentioned, the literature already contains a thorough analysis of the

trispectra for general single-field inflation models, see for example [33]. Work on the

four-point function for ghost inflationary models has recently been presented [32, 30].

Our starting point, being based on a comprehensive effective theory, clearly encompasses

all these models. Working with the effective Hamiltonian above translates into many

immediate advantages as listed before but, on the other hand, in calculating the resulting

four point function, one faces a substantial number of terms and it is therefore natural

to look for some ordering principle which would single out some contributions to the

trispectrum as the leading ones and allow us to concentrate on them only. In this context

employing a symmetry for the whole theory can prove very useful. Indeed in [31, 30]

the authors consider only those allowed by a particular (approximate in [31]) symmetry

of the action, respectively:

S1 : π → −π ; S2 : π → −π and t → −t . (10)

We plan here to employ our general effective theory to show that, allowing some freedom

on the Mn coefficients that modulate the various terms in the third and fourth order

action, within each one of the two distinct and quite restrictive symmetry requirements

above there are novel curvature-generated terms in the action that should not be disre-

garded as negligible and that, furthermore, show some distinctive features in the shapes

of the trispectrum. We will also describe terms allowed by both the symmetries in

Eq. (10) combined. Of course, one need not employ symmetries to switch on or off any

specific operator in the action. Most of the contributions are indeed freely adjustable

by the correspondent Mn coefficient, a procedure which is, in principle, legitimate since

the underlying theory is unknown. We choose here to restrict ourselves to considering

only symmetry-abiding terms. Let us comment on each one of the symmetries.

S1 is built upon the following considerations. Often the same Mn coefficients multiply

terms of different perturbative orders; consequently the amplitude fNL of the 3-point

function will be related to the amplitude of higher order correlators, notably to τNL, the

amplitude for the four-point function. Whenever the leading part of the trispectrum is

generated by these types of Mn’s one can estimate that for its effect to be observable

τNL has to be five orders of magnitude larger than fNL [31], which leaves little room for

feasible models. On the other hand, one quickly realizes those Mn’s whose first term

starts only at the fourth perturbative order (M4, M̄10...in Eq. (8)) are not plagued by this

9



problem. This then represents a natural way to obtain inflationary models which allow

a large, detectable trispectrum untied to the interactions which make up the bispectrum

(which might well be small now).‖ Indeed, in [31] the authors investigate on the size

of all the interactions driven by the M4, M̄11, N̄1 ¶ coefficients in Eq. (8) and show that

the leading interactions driven by these parameters are all consistent with the π → −π

prescription and are expected to give a comparable signal +. By construction then, the

terms in the interaction Hamiltonian that are going to contribute to the trispectrum

and be consistent with the reasoning that inspired the S1 symmetry are only some of

the ones that will make up the contact interaction diagram, namely those whose lowest

order interaction is already at fourth order. This limits us to the contributions regulated

by the following coefficients: M4, M̄10..M̄15, N̄1..N̄5.

S2 symmetry, on the other hand, does not prohibit third order interactions, indeed in

[30] the interaction π̇(∇π)2 is considered and, by inspection of Eq. (6), one can see that

also other terms are allowed, the one regulated by M̄5 and, notably, the M̄6 π̇(∂ijπ)
2/a4

term. The M̄6-driven term is particularly interesting because its contribution to the

bispectrum calculations of [28] generates an interesting flat shape. The scalar exchange

diagram will then be built out of the third order S2-obeying terms in the action. In

particular, inspired by previous findings, we are going to give a detailed account of the

M̄6 contribution.

If both S1 and S2 are to be enforced one must also exclude from the list of S1-abiding

interactions the ones multiplied by M̄10, M̄13, M̄14, M̄15. A more clear picture of the

situation concerning the various symmetries is presented in Table 1 below.

Table 1

Coefficients M2 M3 M4 M̄1 M̄2 M̄3 M̄4 M̄5 M̄6 M̄7 M̄8 M̄9

S1 X X X X X X X X X X X X

S2 X X X X X X X X X X X X

Coefficients M̄10 M̄11 M̄12 M̄13 M̄14 M̄15 N̄1 N̄2 N̄3 N̄4 N̄5 /

S1 X X X X X X X X X X X

S2 X X X X X X X X X X X

The Coefficients marked with “ X” in correspondence of a given symmetry S are

S-invariant, those marked with “X” violate the S symmetry.

‖ One needs also to check that the interactions driven by coefficients that multiply also third order

fluctuations do not become important in the form radiative corrections to the bispectrum. This check

is done in [31] and ensures that loop corrections of those terms are not relevant.
¶ In the same spirit of the analysis done in [28] for all curvature-generated terms at third order, the

authors of [31] consider in the v2 of their paper some extrinsic-curvature terms generated at fourth

order. They also comment on their importance in near de Sitter limit and their conclusions apply to

our M̄11, N̄1 parameters.
+ It would be interesting to understand to what kind of models, in terms of the fundamental scalar

field, the simple resulting effective Lagrangian corresponds in this case.

10



Note that each Mn coefficient might multiply many interactions at each

perturbative orders and therefore we mark the coefficient as invariant under a symmetry

when all the leading interactions it multiplies are invariant under S1 or S2. Determing

the properties of the coefficients in the second row requires no effort, as one can easily

verify these Mn’s first appear in the action as multipliers of fourth-order terms. Things

are less linear with the coefficients in the first row (except for M4) as they appear at

fourth order both multiplying bare interaction terms and multiplying other coefficients

as well as interaction terms (for an example of the latter case see the terms written

explicitly in Eq. (9)). They also appear at third and some also at second order in

perturbations. One then must carefully check that, given a particular coefficient Mn, in

none of the interactions it multiplies at any order the leading terms violate the symmetry.

For M2,M3, M̄5, M̄6 in the first row one can verify after some checks that these terms all

parametrize indeed approximately invariant interactions upon requiring the coefficient

M̄3
4 to be much smaller than the typical Mn such as M2..M̄6. This is because in the

fourth-order Hamiltonian in Eq. (9) there are terms of the form

∝ 1

M4
M̄3

4 × {M4
2 ,M

4
3 , M̄

2
5 , M̄

2
6} × (S2− violating interaction) (11)

which one then assumes to be subleading. We stress this point because it emerges clearly

and naturally in the effective theory approach.

4. Trispectrum

4.1. IN-IN Formalism

We are going to employ the IN-IN formalism to calculate the four point function of

curvature perturbation. The most general and compact expression for such a quantity

is:

〈Ω|ζk1ζk2ζk3ζk4(t)|Ω〉 = 〈0|T̄{ei
∫
t0
−∞

d3xdt
′

H(x)}ζk1ζk2ζk3ζk4(t) T{e−i
∫
t0
−∞

d3x
′

dt
′′

H(x)}|0〉
, (12)

where T̄ and T indicate respectively anti-time order and time order operations, |0〉 and
|Ω〉 stand for the vacuum of the free and interacting theory.

Expanding both the exponentials in Eq. (12), we single out the first non vanishing terms

that will contribute to the scalar exchange and contact interaction diagrams.

〈Ω|ζk1ζk2ζk3ζk4(t)|Ω〉 =

〈0|T̄{i
∫ t0

−∞

d3xdt
′H3(x)}ζk1ζk2ζk3ζk4(t) T{−i

∫ t0

−∞

d3x
′

dt
′′H3(x

′

)}|0〉

+〈0|T̄{ i
2

2

∫ ∫

d3x dt
′

d3x
′

dt
′′H3(x)H3(x

′

)}ζk1ζk2ζk3ζk4(t)|0〉

11



+〈0|ζk1ζk2ζk3ζk4(t)T{
(−i)2

2

∫ t0

−∞

∫ t0

−∞

d3x dt
′

d3x
′

dt
′′H3(x)H3(x

′

)}|0〉

+〈0|T̄{i
∫ t0

−∞

d3x dtH4(x)}ζk1ζk2ζk3ζk4(t)|0〉

+〈0|ζk1ζk2ζk3ζk4(t)T{−i

∫ t0

−∞

d3x
′

dt
′′H4(x

′

)}|0〉+ ... (13)

where H3,H4 are the third and fourth-order Hamiltonian in the interaction picture. The

latter two terms make up the contact interaction diagram, the rest is responsible for the

scalar exchange. Let us also remind the reader that the gauge invariant observable

ζ is, at first approximation, linearly related to the scalar π via ζ = −Hπ. Also,

already at this stage one can see that the result of the four point function is going to

depend on six variables. All wavefunctions, once in Fourier space, depend only on the

magnitude of their momenta. There are at most ten fields involved in the contractions,

eight of which will always depend on the magnitude of the four external momenta

(k1, k2, k3, k4). We are left with one last contraction between two fields depending on

the magnitude of one vector which, by construction, is going to be the sum of two

external momenta. It turns out that, employing the overall momentum conservation,

two variables are sufficient to describe any of these linear combinations, we choose

(k12 ≡ |~k1 + ~k2|, k14 ≡ |~k1 + ~k4|), giving a total of six variables. As clear from above,

the M̄6-driven third-order interaction we are going to consider further depends on scalar

products between the various momenta but, as one can easily verify, these can all be

fully specified by using the six variables introduced above. All the variables we will

employ are represented in the figure below.

k1

k2

k3k4
k14

k12

α
β

γ

Figure B: the regular tetrahedron described by the four external momenta and k12, k14

In order to get a tetrahedron as the one in Fig B one must enforce the following

inequalities:

cos(α− β) ≥ cos(γ) ≥ cos(α+ β) (14)

with

cos(α) =
k2
1 + k2

14 − k2
4

2k1k14
; cos(β) =

k2
2 + k2

14 − k2
3

2k2k14
; cos(γ) =

k2
1 + k2

2 − k2
12

2k1k2
. (15)
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From −1 ≤ cos(α, β, γ) ≤ 1 one also obtains the usual triangles inequalities. Here we

single out some of the inequalities which we are going to use in what follows:

k2
12 + k2

14 ≤ 4 ;
√

1 + k2
4 − 2k4 ≤ k14 ≤

√

1 + k2
4 + 2k4. (16)

In order to have a visual intuition and understanding of the result, once the calculation

of the several contributions to the trispectrum is performed one needs to set up a number

of configurations in which four out of the six variables are held fixed. Having more than

one configuration also increases one’s ability to distinguish the signatures of different

interactions. Following [33], we adopt the set up described below:

• Equilateral configuration: all the external momenta have the same magnitude

k = k1 = k2 = k3 = k4; the two variables left are plotted as k12/k, k14/k.

Note that when plotting in this configuration we will use the first inequality in

Eq. (16). Incidentally, this is the only configuration for which exact calculations for

the trispectrum in ghost inflation have been presented (see [30]) so far. Note also

that for the equilateral as well as for the other configurations, one conveniently plots

the result of the calculations in Eq. (13) for any specific interaction term multiplied

by a factor of
∏4

i=1 k
3
i . It is done also because this factor is generally common to

all the contributions and so removing it sharpens the differences between the plots

of each interaction term.

• Folded configuration: here one has k12 → 0 as well as k1 = k2 and k3 = k4. The

second and third inequalities in Eq. (16) must be enforced in this case. The variables

k14 and k4 are the ones plotted in this configuration.

• Specialized planar limit configuration: in this case we have k1 = k3 = k14 as well as:

k12 =
[

k2
1 +

k2k4
2 k2

1

(

k2k4 +
√

(4k2
1 − k2

2)(4k
2
1 − k2

4)
)]1/2

. (17)

The variables plotted are going to be k2/k1 and k4/k1.

• Near double squeezed limit configuration: the tetrahedron is now a planar

quadrangle and k3 = k4 = k12. The region of interest is in particular the one

for which k3, k4, k12 → 0 where the following relation holds:

k2 =

√

k2
1(−k2

12 + k2
3 + k2

4)− k2
s1k

2
s2 + k2

12k
2
14 + k2

12k
2
4 + k2

14k
2
4 − k2

14k
2
3 − k4

4 + k2
3k

2
4√

2k4
(18)

with

k2
s1 = 2

√

(k1k4 + k1 · k4)(k1k4 − k1 · k4) k2
s2 =

√

(k3k4 + k3 · k4)(k3k4 − k3 · k4).

(19)

In this case as well the last two inequalities of Eq. (16) will be imposed on the

variables k14/k1 and k4/k1. Note that, only in this configuration, what one actually

plots is the result of Eq. (13) times
∏4

i=1 k
2
i , instead of

∏4
i=1 k

3
i . This is once again

done in order to better appreciate the difference among the many interaction terms.
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We now consider the result for the scalar exchange contribution focusing in particular

on an interaction term (the one proportional to M̄6 in Eq. 6 ) case which proved very

interesting in plotting the shape of the bispectrum [28].

In all the calculations that follow we use a simplifying assumption which has been

verified to hold for 3-point functions and is expected to hold for higher correlators as

well [28]. Instead of using the generalized wavefunction which comprises the general

single-field inflation solution, the Ghost inflation one, etc. as its simplified limits, we

employ the usual Hankel function H3/2(kc̃sτ) as a solution to the equation of motion

for the quadratic action. The rationale for such a simplification is that, as one can

readily verify, the main contribution to higher order correlators comes as usual from

the horizon-crossing region and precisely in that region the behaviour of the general

solution of [28] (see also [41]) resembles very closely the one of the simpler specific DBI

wavefunction. We elaborate further on this fact in Appendix B where some examples

and comparisons of explicit calculations are provided.

Before moving to the detailed analysis of the shape-functions for several interactions

terms in various configurations, let us comment briefly on the amplitudes generically

associated with these interaction terms. As noted before, building on the freedom on the

Mn coefficients allowed by the theory and on the possibility of employing a small speed

of sound, c2s ≪ 1 (the same holds for the parameters which represent the generalization

of c2s, i.e. α0 and β0), one can obtain large values for the amplitude associated to each one

of the curvature-generated terms we are going to study. This has been quantitatively

verified for all the terms of Eq. (6) in [28]. As an example, consider the M̄6-driven

fourthorder interaction term. To estimate the size of the amplitude associated with a

given interaction term one considers its ratio with the quadratic terms of the theory at

freezing [24]. Applying this prescription to our example one obtains:

LM̄2

6
(∇π)2(∇2π)2

L2
∼ M̄2

6 H
6 π4/c̃s

6

M4
2 H

2 π2
∼ M̄2

6 H
2

M4
2

ζ2

c̃s
6 (20)

where the linear relation ζ = −Hπ has been used; taking ζ ∼ 10−5 gives a rough

estimate of the size of the non linear corrections.

4.2. Scalar exchange diagram

Here we are going to consider the interaction term M̄6 π̇(∂ijπ)
2/a4. Note that, as

opposed to the M̄8, M̄9-regulated terms in Eq. (6) which give a flat shape for the

bispectrum much like the M̄6-driven interaction, this term is actually invariant under

the symmetry S2 while for it to be (approximately) invariant under S1 one needs

to require its M̄6 coefficient to be much smaller than M4 which would in turn make

its signal undetectable. We now write more explicitly the contribution of the M̄6-

driven third order interaction to the scalar exchange diagram. For all the details of the

calculation, including contractions, we refer the reader to Appendix A. Consider here

just one particular contraction of the fields, the sample contribution we are after looks
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like the following:

< πk1πk2πk3πk4 >
s.e.
M̄6

=
∑

all contractions

π∗
k1π

∗
k2πk3πk4(0)

∫ t→ 0

−∞

dt1a
3π̇k12πk1πk2(k1 · k2)

2/a4
∫ t→ 0

−∞

dt2a
3π̇∗

k12π
∗
k3π

∗
k4(k3 · k4)

2/a4

(21)

−2Re

[

π∗
k1
π∗
k2
π∗
k3
π∗
k4

∫ t→ 0

−∞

dt1
a3

a4
π̇∗
k12

πk1πk2(t1)(k1 · k2)
2

∫ t1

−∞

dt2
a3

a4
π̇k12πk3πk4(t2)(k3 · k4)

2
]

,

(22)

where an overall momentum conservation delta and a factor of (2π)3 have been omitted

for simplicity.

In Fig. 1, 2 below we plot what one obtains by summing over all contractions, accounting

for the symmetry factors of the vertices and plotting the result.

For the sake of comparison we often make reference to the shapes obtained in [33] and

[30]. In the former work the so called local trispectrum is also plotted and compared

with findings for general single-field inflation models; in the latter one shapes for

the trispectrum of ghost inflation are presented in the equilateral configuration only.

As mentioned, our starting Lagrangian comprises both these inflationary models; we

decided to concentrate on plotting the novel curvature-generated terms that are invariant

under S1, S2 or both.

Figure 1. The equilateral configuration shape is presented on the left from the scalar

exchange contribution of the M̄6-driven interaction. The shape-function is different

from the plots presented in [33]. On the other hand, once a necessary change of

variables has been performed, it is qualitatively similar to the shape for the contact

interaction diagram which arises from the ghost inflation (∇π)4 interaction term in

[30].

On the right we plotted our findings for the M̄6-generated interaction in the folded

configuration. It very much resembles the ones obtained in [33] for the scalar exchange

diagrams from DBI-like terms, especially from the interaction π̇(∇π)2 . In all the

pictures above and below k1 has ben set equal to unity without loss of generality.
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Figure 2. On the left the plot obtained for the M̄6 interaction in the planar

configuration plot. Note here some of the interesting features: as k2, k4 → 0 the

shape function goes to zero, much like it happens for DBI-generated interactions. As

k2, k4 → 2 the shape function reaches values that are negative, albeit slightly so.

Looking at the k2 = k4 line we see that it is convex, rather than concave as found for

other interaction types in [33]

On the right the planar limit double squeezed configuration is plotted. In the region of

interest, namely for k12 → 0, the shape function is non-zero, finite and negative; this

again is different than what found in [33] for a variety of DBI-originated terms.

Overall we see that performing the shape analysis for this S2-abiding term we are

able to find some distinctive features with respect to the DBI-generated contributions.

This is quite interesting also given the fact that the very same M̄6-modulated interac-

tion term gives rise to a flat shape for the three point function [28] which contributes

to enlarge the allowed classification of bispectra shape-functions for single-field models

of inflation (with Bunch-Davies vacuum).

4.3. Contact interaction diagram

We now turn to the calculation of various terms that contribute to the contact interaction

diagrams. The terms driven by M3,M4 are DBI-generated and have been calculated in

a number of papers, notably [16, 33]. M2 is found in both DBI and Ghost inflationary

theories [33, 30]. If we are to preserve both symmetries then we need to focus on

M̄11, M̄12, N̄1..N̄5 as one can easily check from Table 1.

Given any interaction term at fourth order, its contribution to the contact interaction

diagram can be written as:

〈πk1πk2πk3πk4(t → 0)〉c.i.H4
= −2Im

[

〈0|T̄{i
∫ t→0

−∞

d3x dt
′H4(x)π

∗
k1π

∗
k2π

∗
k3π

∗
k4(t → 0)}|0〉

]

(23)

where Im stands for taking the imaginary part; a delta enforcing momentum conserva-

tion and unimportant numerical factors have been omitted.
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We have applied the above formula to a number of fourth-order interaction terms provid-

ing some examples of notable S1 and S2-abiding terms, S1 or S2 invariant contribu-

tions and, finally, terms that do not respect any of the symmetries above. We start with

the S2-invariant interaction term ∼ M4
2 (∇π)4. This contribution is present in both DBI-

like and Ghost inflationary models (e.g. in DBI one simply has 1/c2s = 1− 2M4
2 /M

2
P Ḣ).

Although already written down in [30, 33], this term has not been plotted in all four

configurations described in section 4 we employ here. This is because in DBI-like theo-

ries it is expected to be subdomimant with respect to the M4
4 π̇

4 term.

• O1 = 1/2 M4
2 (∂iπ)

4 /a4

For the shape function of the operator (∇π)4 we see that a number of interesting issues

arise. First, the plot in the equilateral configuration does not resemble any of those

plotted in [33]. ∗ Then, as we mentioned in Fig. 2, in the double squeezed configuration

the k12 → 0 limit gives a non-zero finite shape function. This is important because, up

to the results in [33], this limit was thought as very useful to distinguish the leading

contributions coming from interactions at third order in perturbations from the ones at

fourth order in fluctuations.

Figure 3. The equilateral configuration shape for the O1 operator is presented on

the left. It is different from the results in [33] and very much resembles the plot we

obtained for the scalar exchange calculation. Notice that upon performing a change

of variables, it is basically identical to the (∇π)4 interaction term plotted in [30] (We

elaborate further on this point in Appendix B).

On the right we plotted our findings for the O1 interaction term in the folded

configuration. As it will be for the other interactions, this configurations provides

no particularly distinctive features that would allow to single out the constributions

from the different interaction operators.

In fact, all of the terms contributing to the scalar exchange diagram in [33] give a shape

function which in the k12 → 0 is finite. On the contrary, the leading contact interaction

∗ See Appendix B for a detailed account of the plot of this term first done in [30] with different variables

giving results which are essentially identical to ours despite a simplyfing assumption on our part.
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diagram contributions analyzed in [33] do vanish in this limit. Note also that if one is

to relax the assumption of a Bunch-Davies vacuum, the authors of [33] showed that this

is not true anymore.

Figure 4. The O1 interaction planar configuration shape on the left is not exceedingly

different from the ones presented in [33]: it vanishes for k2, k4 → 0, it is peaked for

k2 = 2 = k4. On the k2 = k4 line the shapefunction is convex, rather than concave as

for the contact interaction term plotted in [33].

On the right we plotted the O1 interaction shape function in the planar limit double

squeezed configuration. Here we immediately note an interesting feature: despite this

being a contribution to the contact interaction diagram, in the k4 = k12 → 0 it gives

a finite, non zero shape function. We comment more on this fact in the text.

Next, we continue keeping our attention focused on terms which are S1 and S2 in-

variant. These include, in terms of their free coefficient, M̄11, M̄12, N̄1..N̄5. Since they

generate shape functions which are qualitatively very similar, we chose to plot just two

representative terms in this list.

• O2 = 1/6 M̄2
11 π̇

2 (∂2
i π)

2 /a4

In the plots below we see that the M̄11-driven term, generates shapes which are

very similar to the ones plotted in [33] for the DBI-generated term ∼ π̇4.
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Figure 5. The equilateral configuration shape is presented on the left for the O2

operator. Because of the way the space derivatives are written in Fourier space there’s

no k12, k14 dependence and so one gets a plateau. On the right our findings for O2 in

the folded configuration.

Figure 6. The O2 planar configuration shape on the left: it vanishes for k2, k4 → 0,

it is peaked for k2 = 2 = k4. On the k2 = k4 line the shapefunction is now concave,

just like one would get for the π̇4 interaction.

On the right we plotted the shape function in the planar limit double squeezed

configuration associated to the O2 interaction term.

We proceed with the other representative term:

• O3 = 1/4! N̄3 ∂
2
ρπ ∂ijπ ∂jkπ ∂kiπ /a8

The differences with respect to the M̄11-driven interaction shapes are to be find

in the first and the third configuration: in the first configuration they are due to the

k-dependence of the interaction, on the third configuration N3 gives a plot similar to

the one tuned by the M2 coefficient(see Fig. 4).
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Figure 7. The equilateral configuration shape for O3 is presented on the left. On the

right our findings for the O3 operator in the folded configuration.

Figure 8. The planar configuration shape on the left for O3. On the right we plotted

the shape function of the O3 interaction term in the planar limit double squeezed

configuration.

We now turn our attention onto terms which violate one of the symmetries, S1 in this

case. Indeed, we analyze the interaction ∼ M4
2M

4
3 π̇

2(∂iπ)
2 /a2

• O4 = (M4
2M

4
3 )/(2M

4
2 +M2

P ǫH
2 − 3M̄3

1H) × π̇2 (∂iπ)
2 /a2
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Figure 9. The equilateral configuration shape for O4 is presented on the left. On

the right our findings for the folded configuration associated to O4. Both are very

similar to we obtained for the M̄11 in Fig. 5 and to what was found for the M4
4 -driven

interaction in the literature [33].

For this interaction term we see the interesting feature presents itself in the fourth

configuration where the k12 → 0 limit gives a finite shape function.

Figure 10. The planar configuration shape for O4 on the left. On the right we plotted

theO4-generated shape function in the planar limit double squeezed configuration which

gives again a non-zero and finite shape function even for fourth-order interactions such

as the one under scrutiny here.

We now proceed to plot our findings for one more term, precisely the leading fourth-

order interaction term among the ones driven by M̄6. It is clear that whenever this term

gives a leading third order contribution (something one can achieve given the freedom

on most Mn’s ), it violates S1. S2 however, is preserved by the leading terms associated

to this coefficient at third and fourth order as is clear from Eq. (9) and Table 1.

• O5 = 1/6 M̄6(∂kπ)
2 (∂ijπ)

2 /a6
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Figure 11. The equilateral configuration shape for the operator O5 is presented on

the left: this shape for the plot function has not been seen before in the equilateral

configuration.

On the right our findings for the O5 interaction term in the folded configuration.

As one can see from Fig. 11, the plot in the equilateral configuration has no analogue

in the shapes of [33, 30] for this configuration. It is somewhat reminiscent of the shape

obtained for the π̇4 of [33] but again, we stress it was obtained in a different configuration.

The results plotted in Fig. 12 show once again that it is not safe in theories more general

than DBI to attribuite to the planar limit double squeezed configuration the role to

provide a distinctive signature in the k12 → 0 limit that would enable one to distinguish

between third and fourth-order interaction contributions (see the discussion in [33]).

Figure 12. The planar configuration shape for O5 on the left. On the right we plotted

the O5-generated shape function in the planar limit double squeezed configuration
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5. Conclusions

In this work we aimed at employing the tools of effective field theory [24] to probe the

space of all possible interactions for inflation driven by a single scalar degree of freedom

up to fourth order in perturbations. Following a companion work on the bispectrum

[28], and guided by the requirement of some additional symmetries on the action as

an ordering principle [30, 31], in Section 4 we singled out the distinctive features in

the trispectrum one obtains when considering curvature-generated terms from a very

general fourth-order Hamiltonian. It is important to note that all of these intereactions

allow, by construction, for a large trispectrum. Some of them present features which

also emerge in DBI-inflation and Ghost inflation [33, 30].

We have also identified third and fourth-order interaction terms which have not been

analyzed before and whose analysis reveals novel interesting effects. We were able

to show that, unlike what happens in DBI-like models, the analysis of the double

squeezed configuration cannot give a clear cut clue as to what kind of signal comes

from leading third-order terms as opposed to fourth-order terms in perturbations. We

found many interactions generating a shape in the equilateral configuration that mimics

the behaviour of the ghost interaction term ( i.e. (∇π)4 ) shape function first plotted

in [30] which is quite different from the shapes of the DBI model (we also extended the

ghost inflation plots of [30] to three other configurations). Triggered by an interesting

flat shape found in [28], specifically the one controlled by the M̄6 coefficient, the analysis

of this term contributions to the scalar exchange and contact interaction diagram was

calculated and plotted: a shape function which has not been found before emerged in

the equilateral configuration for the contact interaction contribution. Finally, in Section

4, we again verified up to fourth order a feature which already emerged at the level of the

bispectrum in [28]: a shape function which in general single field inflation models is only

obtained either by employing a linear combination of operators (as far as the Bispectrum

is concerned) or relaxing the Bunch-Davies vacuum requirement for the theory, quite

naturally arises in more general setups as the one employed here. Furthermore, it does

so when considering several and independent interaction terms.
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6. Appendix A

A more detailed presentation of the scalar exchange calculation for the M̄6-driven term

is presented here. We start from the scalar exchange part of Eq. (13):

〈Ω|ζk1ζk2ζk3ζk4(t)|Ω〉s.e. =

〈0|T̄{i
∫ t0

−∞

d3xdt
′H3(x)}ζk1ζk2ζk3ζk4(t) T{−i

∫ t0

−∞

d3x
′

dt
′′H3(x)}|0〉

+〈0|T̄{ i
2

2

∫ ∫

d3x dt d3x
′

dt
′′H3(x)H3(x

′

)}ζk1ζk2ζk3ζk4(t)|0〉

+〈0|ζk1ζk2ζk3ζk4(t)T{
(−i)2

2

∫ t0

−∞

∫ t0

−∞

d3x dt d3x
′

dt
′′H3(x)H3(x

′

)}|0〉.

(24)

Using Wick contraction on a generic operator φ, one has:

T{φ(t1)φ(t2)φ(t3)φ(t4)} = N{φ(t1)φ(t2)φ(t3)φ(t4) + all contractions}, (25)

where N is the normal ordering operator. Note also that, being our π ∼ ζ operators

squeezed between two vacua of the free theory, this reduces to considering only terms

which are writeable as fully contracted contributions. For the anti-time order operator

the same formula holds, only one needs to define contractions differently. We show

below this difference:

φ(~x1, t1) φ(~x2, t2)T = [φ+(~x1, t1), φ
−(~x2, t2)]θ(t1 − t2) + [φ+(~x2, t2), φ

−(~x1, t1)]θ(t2 − t1)

(26)

φ(~x1, t1) φ(~x2, t2)T̄ = [φ+(~x2, t2), φ
−(~x1, t1)]θ(t1 − t2) + [φ+(~x1, t1), φ

−(~x2, t2)]θ(t2 − t1)

(27)

where

φ+(~x2, t2) =

∫

d3k

(2π)3
φ(~k, t2) ake

i~k·~x2; φ−(~x2, t2) =

∫

d3k

(2π)3
φ∗(~k, t2) a

†
k
e−i~k·~x2. (28)

Using the definitions above one gets several different contributions from Eq. (24). Note

also that, using time and anti-time order definitions, the last two lines of Eq. (24) are

just each other’s conjugate and can therefore be grouped together. We now procede

to write an explicit expression for the four point function generated by the M̄6-driven

contribution to the scalar exchange diagram:

〈πk1πk2πk3πk4〉s.e.M̄6
∝ (29)

M8
2

3

[

4 ·
(

π∗
k1π

∗
k2πk3πk4(0)

∫ 0

−∞

dt1
a3

a4
π̇k12πk1πk2(k1 · k2)

2

∫ 0

−∞

dt2
a3

a4
π̇∗
k12π

∗
k3π

∗
k4(k3 · k4)

2

+ 5 permutations) +
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(

2 · 2 · π∗
k1π

∗
k2πk3πk4(0)

∫ 0

−∞

dt1
a3

a4
π̇k1πk12πk2(−k12 · k2)

2

∫ 0

−∞

dt2
a3

a4
π̇∗
k12π

∗
k3π

∗
k4(k3 · k4)

2

+11 permutations)
(

2 · 2 · π∗
k1π

∗
k2πk3πk4(0)

∫ 0

−∞

dt1
a3

a4
π̇k12πk1πk2(k1 · k2)

2

∫ 0

−∞

dt2
a3

a4
π̇∗
k3π

∗
k12π

∗
k4(k12 · k4)

2

+11 permutations)
(

4 · π∗
k1π

∗
k2πk3πk4(0)

∫ 0

−∞

dt1
a3

a4
π̇k1πk12πk2(−k12 · k2)

2

∫ 0

−∞

dt2
a3

a4
π̇∗
k3π

∗
k12π

∗
k4(k12 · k4)

2

+23 permutations)] +

−2M8
2

3
Re

[

4 ·
(

π∗
k1π

∗
k2π

∗
k3π

∗
k4(0)

∫ 0

−∞

dt1
a3

a4
π̇∗
k12πk1πk2(k1 · k2)

2

∫ t1

−∞

dt2
a3

a4
π̇k12πk3πk4(k3 · k4)

2

+ 5 permutations) +
(

2 · 2 · π∗
k1π

∗
k2π

∗
k3π

∗
k4(0)

∫ 0

−∞

dt1
a3

a4
π̇k1π

∗
k12πk2(−k12 · k2)

2

∫ t1

−∞

dt2
a3

a4
π̇k12πk3πk4(k3 · k4)

2

+11 permutations)
(

2 · 2 · π∗
k1π

∗
k2π

∗
k3π

∗
k4(0)

∫ 0

−∞

dt1
a3

a4
π̇∗
k12πk1πk2(k1 · k2)

2

∫ t1

−∞

dt2
a3

a4
π̇k3πk12πk4(k12 · k4)

2

+11 permutations)
(

4 · π∗
k1π

∗
k2π

∗
k3π

∗
k4(0)

∫ 0

−∞

dt1
a3

a4
π̇k1π

∗
k12πk2(−k12 · k2)

2

∫ t1

−∞

dt2
a3

a4
π̇k3πk12πk4(k12 · k4)

2

+23 permutations)] . (30)

One then performs these calculations and plots the results to obtain Fig. 1,2. The

situation for the contact interaction diagram contributions is considerably simpler as

there is just one time intergral to be performed and two less fields to be taken into

account.

7. Appendix B

We want here to show with an example what seems to be a general feature concerning

the use of (reasonably) approximated wavefunctions in the calculation of higher order

correlators. In [28] we found that in performing an exact calculation for correlators

in a very general theory such as the one we employed in this paper, whenever a

given interaction term was producing a shape function for the trispectrum which one

could qualitatively classify as, say, equilateral, so was the calculation performed with a

simplified wavefunction. This is due to two independent reasons. First, we start from

the realization that, precisely in the horizon-crossing region, which is where one expects

the main contribution to any n-point to come from, the exact general wavefunction [28]

and the usual one, H
(1)
3/2(c̃skτ), which in these theories is an approximated solution,

behave very similarly. Secondly, in [28] we concluded that most of the distinctive effects

of the bispectrum where due not to the particular k-modes dependence of the result

of the integrals like the one in Eq. (22), but on the fraction of that k-dependence that
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could be taken outside the integral, so on the part of the k-dependence not directly

attached to the time behaviour of the wavefunction and which is common to the exact

and approximated wavefunction.

We now compare the trispectrum shapefunction of a ghost inflation interaction term,

(∇π)4, performed with the exact ghost solution in [30] with the results we obtain

employing the approximated DBI wavefunction, just what we used in obtaining all

the shape functions presented here.

The interaction reads:

M4
2

2

3
∑

i=1

3
∑

j=1

(∂iπ)
2(∂jπ)

2

a4
(31)

Its trispectrum shapefunction obtained through the approximated methods has been

ploted in Fig. 3. In order to compare it with the exact calculation of [30] we need to

change variables and turn to:

C2 = k̂1 · k̂2; C3 = k̂1 · k̂3; C4 = −1− C2 − C3; k12 =
√

2(1 + C2) k14 =
√

2− C2 − C3)

(32)

We now show the plots obtained by performing this change of variable on our

approximated result alongside the plot obtained with the exact ghost wavefunction

taken directly from [30].

Figure 13. On the left the approximated result. The two shapefunctions are

qualitatively identical barring an unimportant numerical coefficient due to a different

normalization.
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